Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...

Optimizing Barrier Removal in Utah's Weber Basin


An older version of this resource https://doi.org/10.4211/hs.fa37f35610c34a278042d7fc93e8c47f is available.
Authors:
Owners: This resource does not have an owner who is an active HydroShare user. Contact CUAHSI (help@cuahsi.org) for information on this resource.
Type: Resource
Storage: The size of this resource is 156.1 MB
Created: Apr 10, 2018 at 6:29 p.m.
Last updated: May 17, 2022 at 5:25 p.m.
DOI: 10.4211/hs.889b9ccbb0c7407ea9a5a1b5d2bbb935
Citation: See how to cite this resource
Sharing Status: Published
Views: 2430
Downloads: 111
+1 Votes: Be the first one to 
 this.
Comments: No comments (yet)

Abstract

In-stream barriers, such as dams, culverts and diversions alter hydrologic processes and aquatic habitat. Removing uneconomical and aging in-stream barriers to improve stream habitat is increasingly used in river restoration. Previous barrier removal projects focused on score-and-rank techniques, ignoring cumulative change and spatial structure of barrier networks. Likewise, most water supply models prioritize either human water uses or aquatic habitat, failing to incorporate both human and environmental water use benefits. In this study, a dual objective optimization model prioritized removing in-stream barriers to maximize aquatic habitat connectivity for trout, using streamflow, temperature, channel gradient, and geomorphic condition as indicators of aquatic habitat suitability. Water scarcity costs are minimized using agricultural and urban economic penalty functions, and a budget constraint monetizes costs of removing small barriers like culverts and diversions. The optimization model is applied to a case study in Utah’s Weber River Basin to prioritize removing barriers most beneficial to aquatic habitat connectivity for Bonneville cutthroat trout, while maintaining human water uses. Solutions to the dual objective problem quantify and graphically show tradeoffs between connected quality-weighted habitat for Bonneville cutthroat trout and economic water uses. Removing 54 in-stream barriers reconnects about 160 km of quality-weighted habitat and costs approximately $10 M, after which point the cost effectiveness of removing barriers to connect river habitat decreases. The set of barriers prioritized for removal varied monthly depending on limiting habitat conditions for Bonneville cutthroat trout. This research helps prioritize barrier removals and future restoration project decisions within the Weber Basin. The modeling approach expands current barrier removal optimization methods by explicitly including both economic and environmental water uses and is generalizable to other basins.

Subject Keywords

Content

Related Resources

This resource updates and replaces a previous version Kraft, M., S. Null (2017). Optimizing Barrier Removal in Utah's Weber Basin, HydroShare, https://doi.org/10.4211/hs.fa37f35610c34a278042d7fc93e8c47f

Credits

Funding Agencies

This resource was created using funding from the following sources:
Agency Name Award Title Award Number
National Science Foundation iUTAH-innovative Urban Transitions and Aridregion Hydro-sustainability 1208732
National Science Foundation CAREER: Robust aquatic habitat representation for water resources decision-making 1653452

Contributors

People or Organizations that contributed technically, materially, financially, or provided general support for the creation of the resource's content but are not considered authors.

Name Organization Address Phone Author Identifiers
Sarah Null

How to Cite

Kraft, M., S. Null (2022). Optimizing Barrier Removal in Utah's Weber Basin, HydroShare, https://doi.org/10.4211/hs.889b9ccbb0c7407ea9a5a1b5d2bbb935

This resource is shared under the Creative Commons Attribution CC BY.

http://creativecommons.org/licenses/by/4.0/
CC-BY

Comments

There are currently no comments

New Comment

required