Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...

Nitrogen sinks or sources? Denitrification and nitrogen removal potential in riparian legacy sediment terraces affected by milldams


Authors:
Owners: This resource does not have an owner who is an active HydroShare user. Contact CUAHSI (help@cuahsi.org) for information on this resource.
Type: Resource
Storage: The size of this resource is 21.1 KB
Created: Apr 20, 2022 at 8:14 p.m.
Last updated: May 10, 2022 at 5:17 p.m.
Citation: See how to cite this resource
Sharing Status: Public
Views: 447
Downloads: 4
+1 Votes: Be the first one to 
 this.
Comments: No comments (yet)

Abstract

Riparian zones are key ecotones that buffer aquatic ecosystems through removal of nitrogen (N) via processes such as denitrification. How dams alter riparian N cycling and buffering capacity is however poorly understood. Here we hypothesize that elevated groundwater and anoxia due to the back-up of stream water above milldams may enhance denitrification. We assessed denitrification rates (using denitrification enzyme assays) and potential controlling factors in riparian sediments at various depths upstream and downstream of two relict US mid-Atlantic milldams. Denitrification was generally low and not different between upstream and downstream, although was greater per river km upstream considering deeper and wider geometries. Further, denitrification typically occurred in hydrodynamically variable, surface sediments where nitrate-N and organic matter were most concentrated. At depths below 1 m, both denitrification and nitrate-N decreased while ammonium-N concentrations substantially increased, indicating suppression of ammonium consumption or dissimilatory nitrate reduction to ammonium. These results suggest that denitrification occurs where dynamic groundwater levels result in higher rates of nitrification and mineralization, while another N process that produces ammonium-N competes with denitrification for limited nitrate-N at deeper, more stagnant depths. Additionally, nitrate-N-rich runoff from agricultural areas increases denitrification rates, while Na-rich runoff due to road salt application limits denitrification, highlighting the importance of synergistic interactions between land-use legacies. Ultimately, while it is unclear whether relict milldams are sources of N, limited denitrification rates indicate that they are not always effective sinks; thus, milldam removal – especially accompanied by removal of ammonium-N rich sediment terraces – may improve riparian N buffering.

Subject Keywords

Coverage

Spatial

Coordinate System/Geographic Projection:
WGS 84 EPSG:4326
Coordinate Units:
Decimal degrees
Place/Area Name:
Roller & Cooch Milldams
North Latitude
40.2555°
East Longitude
-75.3586°
South Latitude
39.5349°
West Longitude
-76.5067°

Content

Credits

Funding Agencies

This resource was created using funding from the following sources:
Agency Name Award Title Award Number
NSF Hydrologic Sciences 1929747

How to Cite

Peck, E. K., s. inamdar, M. Sherman, J. Hripto, M. Peipoch, A. J. Gold, K. Addy (2022). Nitrogen sinks or sources? Denitrification and nitrogen removal potential in riparian legacy sediment terraces affected by milldams, HydroShare, http://www.hydroshare.org/resource/dae70b4130b04b95aca4081522ccfe78

This resource is shared under the Creative Commons Attribution CC BY.

http://creativecommons.org/licenses/by/4.0/
CC-BY

Comments

There are currently no comments

New Comment

required