In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Resource License Agreement
This resource is shared under the Creative Commons Attribution CC BY.
In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Copy resource bag to your iRODS user zone
Are you sure you want to copy this resource bag to your iRODS user zone?
Please wait for the process to complete.
Redirecting to the referenced web URL
The content you have requested to access is not stored in HydroShare, and we can’t guarantee its availability,
quality, security, or size. If the externally linked content is large, access may take time.
Get file URL
Choose coordinates
A General Approach for Cloud-based Hydrologic Modeling using Jupyter Notebooks
Continued investment and development of cyberinfrastructure (CI) for water science research is transforming the way future scientists approach large collaborative studies. Among the many challenges, that we as a community need to address, are integrating existing CI to support reproducible science, enabling open collaboration across traditional domain and institutional boundaries, and extending the lifecycle of data beyond the scope of a single project. One emerging solution for addressing these challenges is HydroShare JupyterHub which is an open-source, cloud-based, platform that combines the data archival and discovery features of HydroShare with the expressive, metadata-rich, and self-descriptive nature of Jupyter notebooks. This approach offers researchers a mechanism for designing, executing, and disseminating toolchains with supporting data and documentation. The goals of this work are to establish a free and open source platform for domain scientists to (1) conduct data intensive and computationally intensive collaborative research, (2) utilize high performance libraries, models, and routines within a pre-configured cloud environment, and (3) enable dissemination of research products. This presentation will discuss our approach for hydrologic model simulation, sensitivity analysis, and optimization applications in this platform by establishing a generic CI pattern that can be adopted to support research, classroom, and workshop activities
Deleting all keywords will set the resource sharing status to private.
Open
Preview
Download
Download zipped
Get file URL
Open referenced URL
Refresh
Select all
Content
This resource contains links to external content. Linked content is
NOT stored in HydroShare, and we can't guarantee its availability, quality, or
security.
Confirm files deletion
Consider downloading a copy of file(s) before deleting.
Comments
There are currently no comments
New Comment