Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...

Snowbedo Data and Modeling Scripts


Authors:
Owners: This resource does not have an owner who is an active HydroShare user. Contact CUAHSI (help@cuahsi.org) for information on this resource.
Type: Resource
Storage: The size of this resource is 804.0 KB
Created: Sep 01, 2017 at 6:17 p.m.
Last updated: Sep 15, 2017 at 11:16 p.m.
Citation: See how to cite this resource
Sharing Status: Public
Views: 2416
Downloads: 62
+1 Votes: Be the first one to 
 this.
Comments: No comments (yet)

Abstract

The .Rdata datasets were created to be used in the Snowbedo R Package, available on GitHub at : <a href="https://github.com/cahhansen/Snowbedo" rel="nofollow">https://github.com/cahhansen/Snowbedo</a>. The Snowbedo package and models were developed in part with support of the iUTAH project, under the Research Focus Area 3: Understanding the ties between human and environmental water systems.

The datasets contain a collection of time series of streamflow, meteorological, and land surface/atmospheric data which can be used to calibrate streamflow models. Each dataset corresponds to a different watershed/stream in the Wasatch Mountains.

Variables and their definitions are as follows:
Date - date, Year-Month-Day
Streamflow - streamflow rate in cms (from Salt Lake City Department of Public Utilities)
Tmax_C - maximum temperature, degrees Celsius from sub-daily measurements (SNOTEL)
Tmin_C - minimum temperature, degrees Celsius from sub-daily measurements (SNOTEL)
SWE_cm - snow water equivalent, centimeters (SNOTEL)
Albedo - average watershed albedo (derived from MOD01A1 product)
SolarRad_Whm2d - shortwave downwelling radiation, W-h/m2/day (from CERES SYN1deg product)
SnowCover - percentage of watershed covered by snow (derived from MOD01A1 product)
SnowDepth_cm - depth of snow, centimeters (SNOTEL)
Precip_cm - precipitation, centimeters/day (SNOTEL)

Additional parameters are also included for exploring the effects of the lagged parameters (lagged by one day) on streamflow.

Streams and the locations of the SLCDPU Gage Location and their corresponding SNOTEL sites are as follows:
City Creek - 40.7841, -111.883; SNOTEL Site: Louis Meadow (972)
Little Cottonwood - 40.579, -111.798; SNOTEL Site: Snowbird (766)
Lambs Creek -40.7548, -111.709; SNOTEL Site: Parley's Summit (684)
Dell Creek - 40.7809, -111.681; SNOTEL Site: Lookout Peak (596)
Big Cottonwood - 40.618, -111.780; SNOTEL Site: Mill-D (628)

The scripts are intended to be used with the Snowbedo R Package (github.com/cahhansen/Snowbedo. The scripts may be run using R Statistical Software and the dependent external packages (listed in the scripts). The Snowbedo package was developed in order to model streamflow as a result of changing snowpack dynamics (particularly albedo). The purpose of the NeuralNetwork script is to train and build a neural network model of streamflow based on climate and watershed characteristics.Results of the model are a daily time-series of streamflow covering the same time period as the input datasets. Different scenarios (with adjusted albedo) can be created with the ModelDifferencesInAlbedo.R script. The readme.txt file explains how the package can be used.

Subject Keywords

Coverage

Spatial

Coordinate System/Geographic Projection:
WGS 84 EPSG:4326
Coordinate Units:
Decimal degrees
North Latitude
40.8761°
East Longitude
-111.4522°
South Latitude
40.4469°
West Longitude
-111.9218°

Temporal

Start Date:
End Date:

Content

README.txt

# Snowbedo
Package for modeling snowmelt and streamflow in semi-arid, snowpack-driven mountainous watersheds.

This package utilizes  streamflow, temperature data, precipitation, shortwave incoming (downwelling) radiation, and white-sky albedo 
to calibrate a streamflow model based on a simplified snowmelt-based process that is influenced by albedo. This calibrated model can 
then be used to explore various scenarios of albedo (which may be influenced by dust and black carbon deposition).


## Functions included in the Package
### Formatting data
- limitperiod (limits data to specific time period)
- dissipate (calculates daily precipitation from accumulative precipitation)


## Scripts for Using the Snowbedo Package
- NeuralNetwork.R (reads in the formatted data for an individual watershed, subsets based on user-defined list of parameters, and trains a neural network model for streamflow. Produces a time series of modeled streamflow and saves a file of the neural network model)
- ModelDifferencesInAlbedo.R (reads in a formatted dataset and neural network model (produced by NeuralNetwork.R) and creates different scenarios by adjusting the albedo. Produces time series of streamflow for each of the scenarios)

Credits

Funding Agencies

This resource was created using funding from the following sources:
Agency Name Award Title Award Number
National Science Foundation iUTAH-innovative Urban Transitions and Aridregion Hydro-sustainability 1208732

Contributors

People or Organizations that contributed technically, materially, financially, or provided general support for the creation of the resource's content but are not considered authors.

Name Organization Address Phone Author Identifiers
Steven Burian University of Utah
Waqas Ahmed

How to Cite

Hansen, C. (2017). Snowbedo Data and Modeling Scripts, HydroShare, http://www.hydroshare.org/resource/18c8969ecb32409b9cc216c0b882a0b8

This resource is shared under the Creative Commons Attribution CC BY.

http://creativecommons.org/licenses/by/4.0/
CC-BY

Comments

There are currently no comments

New Comment

required