In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Resource License Agreement
This resource is shared under the Creative Commons Attribution CC BY.
In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Copy resource bag to your iRODS user zone
Are you sure you want to copy this resource bag to your iRODS user zone?
Please wait for the process to complete.
Redirecting to the referenced web URL
The content you have requested to access is not stored in HydroShare, and we can’t guarantee its availability,
quality, security, or size. If the externally linked content is large, access may take time.
Get file URL
Choose coordinates
Swaps and Persistence of WRMA's 30 years' Land Use Changes
The most traditional way to examine land use change is to use a cross-tabulation matrix to identify the most important categorical land use transition from time 1 to time 2. However, such method does not necessarily capture or indicate the real changes on the landscape. For example, assuming that from 1986 to 2015, Utah’s total agricultural land loss (aka, net change) is 200 square miles, but this does not mean that only 200 square miles of agricultural land have experienced land use change in the last 30 years. It is highly possible that a given quantity of agricultural land loss at one location can be accompanied by another quantity of agricultural land gain at another location (aka, swapping). Thus, by purely using net change, we might fail to capture the swapping component of change, and fail to capture the intricate transitions of landscape. This dataset analyzed important categorical land use change while account for persistence and swaps. It provides additional information concerning what happened on the landscape.
This dataset includes a statistical table and a GIS raster file. The table summarizes the persistence and swaps, as well as gross gain and gross loss in the Wasatch Range Metropolitan Area (WRMA). The GIS file is the compiled spatial layer that represents the gain, loss, persistence, and swaps on the landscape. We used Water Related Land Use data of Year 1986 to Year 2015 for this analysis. Land use categories used in this dataset include urban (URB), irrigated agricultural land (IR), and non-irrigated agricultural land (NI), sub-irrigated agricultural land (SubIR), riparian (RIP), water, (WATER), and other (OTHER). We then examined the categorical land use changes with a transition matrix.
A categorical land use gain is determined as the conversion from other sources to this particular categorical land use, and a categorical land use loss is defined as conversion from this particular categorical land use to other uses. For example, the gain of irrigated agricultural (IR) land use will be the sum of areas of urban to IR, non-irrigated agricultural land to IR, sub-irrigated agricultural land to IR, riparian to IR, water to IR, and other to IR. The total change is calculated as the sum of gain and loss. The net change equals to |Gain|-|Loss|. The Swap =2* MIN(Gain,Loss).
Deleting all keywords will set the resource sharing status to private.
Resource Level Coverage
Spatial
Coordinate System/Geographic Projection:
WGS 84 EPSG:4326
Coordinate Units:
Decimal degrees
Place/Area Name:
WRMA-Wasatch Range Metropolitan Area
North Latitude
42.2204°
East Longitude
-111.3300°
South Latitude
39.9350°
West Longitude
-112.4725°
Temporal
Start Date:
End Date:
Open
Preview
Download
Download zipped
Get file URL
Open referenced URL
Refresh
Select all
Content
This resource contains links to external content. Linked content is
NOT stored in HydroShare, and we can't guarantee its availability, quality, or
security.
Confirm files deletion
Consider downloading a copy of file(s) before deleting.
We used Water Related Land Use data of Year 1986 to Year 2015 for this analysis. Land use categories used in this dataset include urban (URB), irrigated agricultural land (IR), and non-irrigated agricultural land (NI), sub-irrigated agricultural land (SubIR), riparian (RIP), water, (WATER), and other (OTHER). We then examined the categorical land use changes with a transition matrix.
Credits
Funding Agencies
This resource was created using funding from the following sources:
iUTAH-innovative Urban Transitions and Aridregion Hydro-sustainability
1208732
Contributors
People or Organizations that contributed technically, materially, financially, or provided general support for the
creation of the resource's content but are not considered authors.
Name
Organization
Address
Phone
Author Identifiers
Shujuan Li
Utah State University
Joanna Endter-Wada
Dept. of Environmental & Society, Utah State University
Comments
There are currently no comments
New Comment