In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Resource License Agreement
This resource is shared under the Creative Commons Attribution CC BY.
In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Copy resource bag to your iRODS user zone
Are you sure you want to copy this resource bag to your iRODS user zone?
Please wait for the process to complete.
Redirecting to the referenced web URL
The content you have requested to access is not stored in HydroShare, and we can’t guarantee its availability,
quality, security, or size. If the externally linked content is large, access may take time.
Get file URL
You have requested the URL for a file that is within a Discoverable resource.
This resource has Private Link Sharing enabled.
This means that anyone with the link will be able to access the file,
but users without the link will not be permitted unless they have "view" permission on this resource.
You have requested the URL for a file that is within a Discoverable resource.
Only you and other HydroShare users who have been granted at least "view" permission will be able to access this URL.
If you want this URL to be publicly available,
change the sharing status of your resource to "public" or enable Private Link Sharing.
You have requested the URL for a file that is within a Private resource.
This resource has Private Link Sharing enabled.
This means that anyone with the link will be able to access the file,
but users without the link will not be permitted unless they have "view" permission on this resource.
You have requested the URL for a file that is within a Private resource.
Only you and other HydroShare users who have been granted at least "view" permission will be able to access this URL.
If you want this URL to be publicly available, change the sharing status of your resource to "public" or enable Private Link Sharing.
Choose coordinates
Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...
The following files/folders contain non-preferred characters in their name.
This may result in problems and you are encouraged to change the name to follow the
HydroShare preferred character set.
This dataset is supplementary information to: Schilling et al. (2021): Quantifying groundwater recharge dynamics and unsaturated zone processes in snow‐dominated catchments via on‐site dissolved gas analysis. Water Resour. Res., e2020WR028479. doi: 10.1029/2020WR028479
The data was used to develop a novel tracer method for the quantification of groundwater recharge from snowmelt and includes hydraulic, snow, meteorologic and tracer measurements covering the period of Nov-2017 to Dec-2018. The data was recorded in the experimental boral headwater catchment 'Bassin Expérimental du Ruisseau des Eaux-Volées' (BEREV) of Université Laval, located in the Forêt Montmorency, Québec, Canada.
This resource contains links to external content. Linked content is
NOT stored in HydroShare, and we can't guarantee its availability, quality, or
security.
Confirm files deletion
This file will be permanently deleted. Consider saving a copy if it is
important to you. If this is the last file in the resource and it is public,
the sharing status will revert to private. If you are not the owner of
this resource, then an owner will need to reset this to public after a new
file has been added. If you want to replace this file, add the new file
first then delete the old one, so that sharing status does not change.
This dataset is supporting information to: Schilling et al. (2021): Quantifying groundwater recharge dynamics and unsaturated zone processes in snow‐dominated catchments via on‐site dissolved gas analysis. Water Resour. Res., e2020WR028479, DOI: 10.1029/2020WR028479
The data was used to develop a novel tracer method for the quantification of groundwater recharge from snowmelt and includes hydraulic, snow, meteorologic and tracer measurements covering the period of Nov-2017 to Dec-2018. The data was recorded in the experimental boral headwater catchment 'Bassin Expérimental du Ruisseau des Eaux-Volées' (BEREV) of Université Laval, located in the Foret Montmorency, Quebec, Canada.
This supporting information dataset consists of two files: Table_S1.xlsx and Table_S2.xlsx.
- Table_S1.xlsx contains (a) GW and SW data (hydraulic head, temperature and electrical conductivity, SW discharge), (b) hydrometeorological data (air pressure, air temperature, soil temperature, precipitation, snow depth), and (c) the residual water balance calculation for the year 2018 (at daily timestep). In addition to SW and hydrometeorological data, the residual water balance calculation includes the following variables: baseflow, runoff, snow water equivalent, snowmelt and recharge. Details on the measurement, data sources and the calculation of the different water balance components are provided in the main manuscript.
- Table_S2.xlsx contains hydrological tracer measurements for groundwater, surface water, precipitation and snow. Data of the following hydrologic tracers are provided: stable water isotopes (i.e., d2H and d18O), Rn-222, H-3/He-3, dissolved gases measured on-site (He, Ar-40, Kr-84, N2, O2 and CO2) as well as noble gas isotopes.
Daily streamflow data was obtained from the publicly available gauging station records (MELLCC station 051004) (MELLCC, 2019). All other data was measured by Schilling et al. (2020)) and the EVAP project (see Isabelle et al., 2020a (DOI: 10.1016/j.agrformet.2019.107813), Isabelle et al., 2020b (DOI: 10.1007/s10546-019-00488-7), Parajuli et al., 2020 (DOI: 10.1002/hyp.13756), Parajuli et al., 2020 (DOI: 10.3390/w12082284))
Related Resources
This resource is referenced by
Schilling, O. S., Parajuli, A., Tremblay Otis, C., Müller, T. U., Antolinez Quijano, W., Tremblay, Y., . . . Therrien, R. (2021): Quantifying groundwater recharge dynamics and unsaturated zone processes in snow-dominated catchments via on-site dissolved gas analysis. Water Resour. Res., e2020WR028479. doi:10.1029/2020WR028479
Isabelle, P.-E., Nadeau, D. F., Anctil, F., Rousseau, A. N., Jutras, S., & Music, B. (2020a). Impacts of high precipitation on the energy and water budgets of a humid boreal forest. Agric. For. Meterol., 280. doi:10.1016/j.agrformet.2019.107813
The content of this resource is derived from
Isabelle, P.-E., Nadeau, D. F., Perelet, A. O., Pardyjak, E. R., Rousseau, A. N., & Anctil, F. (2020b). Application and evaluation of a two-wavelength scintillometry system for operation in a complex shallow boreal-forested valley. Boundary Layer Meteorol. doi:10.1007/s10546-019-00488-7
The content of this resource is derived from
Parajuli, A., Nadeau, D. F., Anctil, F., Schilling, O. S., & Jutras, S. (2020). Does data availability constrain temperature-index snow model? A case study in the humid boreal forest. Water, 12(8), 2284. doi:10.3390/w12082284
The content of this resource is derived from
Parajuli, A., Nadeau, D. F., Anctil, F., Parent, A.-C., Bouchard, B., Girard, M., & Jutras, S. (2020). Exploring the spatiotemporal variability of the snow water equivalent in a small boreal forest catchment through observation and modelling. Hydrol. Process., 34(11), 2628-2644. doi:10.1002/hyp.1375
Credits
Funding Agencies
This resource was created using funding from the following sources:
Schilling, O. S., A. Parajuli, C. Tremblay Otis, T. U. Müller, W. Antolinez Quijano, Y. Tremblay, D. F. Nadeau, M. S. Brennwald, S. Jutras, R. Kipfer, R. Therrien (2021). BEREV data 2017-2018, HydroShare, https://doi.org/10.4211/hs.650ba9303d5942c2b36fa5beafbf612a
Comments
There are currently no comments
New Comment