Hi, I'm an error. x

No Snow No Flow - The 2015 Snow Drought in the Oregon Cascades


Authors: Sarah Lewis
Owners: Sarah Lewis
Resource type:Generic
Created:Jul 06, 2017 at 8:09 p.m.
Last updated: Jul 06, 2017 at 8:17 p.m. by Sarah Lewis

Abstract

Hydrologic extremes, such as drought, offer an exceptional opportunity to explore how runoff generation mechanisms and stream networks respond to changing precipitation regimes. The winter of 2014-2015 was the warmest on record in western Oregon, US, with record low snowpacks, and was followed by an anomalously warm, dry spring, resulting in historically low streamflows. But a year like 2015 is more than an outlier meteorological year. It provides a unique opportunity to test fundamental hypotheses for how montane hydrologic systems will respond to anticipated changes in amount and timing of recharge. In particular, the volcanic Cascade Mountains represent a “landscape laboratory” comprised of two distinct runoff regimes: the surface-flow dominated Western Cascade watersheds, with flashy streamflow regimes, rapid baseflow recession, and very low summer flows; and (b) the spring-fed High Cascade watersheds, with a slow-responding streamflow regime, and a long and sustained baseflow recession that maintains late summer streamflow through deep-groundwater contributions to high volume, coldwater springs.
We hypothesize that stream network response to the extremely low snowpack and subsequent recharge varies sharply in these two regions. In surface flow dominated streams, the location of channel heads can migrate downstream, contracting the network longitudinally; the wetted channel width and depth contract laterally as summer recession proceeds and flows diminish. In contrast, in spring-fed streams, channel heads “jump” to the next downstream spring when upper basin spring flow diminishes to zero. Downstream of flowing springs, wetted channel width and depth contract laterally as flows recede.
To test these hypotheses, we conducted a field campaign to measure changing discharge, hydraulic geometry, and channel head location in both types of watersheds throughout the summer and early fall. Multiple cross-section sites were established on 6 streams representing both flow regime types on either side of the Cascade crest. In addition we took Isotopic water samples to determine recharge elevations of receding streams. Taken together these measurements reveal the processes by which drainage networks contract as flows diminish – a fundamental property of montane stream systems both now and in the future.

Subject Keywords

Drought

How to cite

Lewis, S. (2017). No Snow No Flow - The 2015 Snow Drought in the Oregon Cascades, HydroShare, http://www.hydroshare.org/resource/8767e0b69df443878b2eaa41c8139d46

This resource is shared under the Creative Commons Attribution CC BY.

 http://creativecommons.org/licenses/by/4.0/
CC-BY

Sharing status:

  • Discoverable Resource  Discoverable
  • Non Sharable Resource  Not Shareable

Coverage


Temporal:

 Start Date:
 End Date:

Content

  You do not have permission to see these content files. Please contact the Authors if you wish to obtain access.

Authors

The people or organizations that created the intellectual content of the resource.

Name Organization Address Phone Author Identifiers
Sarah Lewis

Credits

This resource was created using funding from the following sources:
Agency Name Award Title Award Number
NSF

Ratings

Be the first one to  +1 this.  (You need to be logged in to rate this.)

Comments

There are currently no comments

New Comment

required