Hi, I'm an error. x

Using Digital Elevation Model Derived Height Above the Nearest Drainage for flood inundation mapping and determining river hydraulic geometry


Authors: David Tarboton · Xing Zheng · David Maidment · Yan Liu · Shaowen Wang
Owners: David Tarboton
Resource type:Composite Resource
Created:Apr 25, 2018 at 7:56 p.m.
Last updated: Apr 26, 2018 at 8:34 p.m. by David Tarboton

Abstract

River hydraulic geometry is an important input to hydraulic and hydrologic models that route flow along streams, determine the relationship between stage and discharge, and map the potential for flood inundation give the flow in a stream reach. Traditional approaches to quantify river geometry have involved river cross-sections, such as are required for input to the HEC-RAS model. Extending such cross-section based models to large scales has proven complex, and, in this presentation, an alternative approach, the Height Above Nearest Drainage, or HAND, is described. As we have implemented it, HAND uses multi-directional flow directions derived from a digital elevation model (DEM) using the Dinifinity method in TauDEM software (http://hydrology.usu.edu/taudem) to determine the height of each grid cell above the nearest stream along the flow path from that cell to the stream. With this information, and the depth of flow in the stream, the potential for and depth of flood inundation can be determined. Furthermore, by dividing streams into reaches or segments, the area draining to each reach can be isolated and a series of threshold depths applied to the grid of HAND values in that isolated reach catchment, to determine inundation volume, surface area and wetted bed area. Dividing these by length yields reach average cross section area, width, and wetted perimeter. Together with slope (also determined from the DEM) and roughness (Manning's n) these provide all the inputs needed for establishing a Manning's equation uniform flow assumption stage-discharge rating curve and for mapping potential inundation from discharge. This presentation will describe the application of this approach across the continental US in conjunction with NOAA’s National Water Model for prediction of stage and flood inundation potential in each of the 2.7 million reaches of the National Hydrography Plus (NHDPlus) dataset, the vast majority of which are ungauged. The continental US scale application has been enabled through the use of high performance parallel computing at the National Center for Supercomputing Applications (NCSA) and the CyberGIS Center at the University of Illinois.

Presentation at 2018 AWRA Spring Specialty Conference: Geographic Information Systems (GIS) and Water Resources X, Orlando, Florida, April 23-25, http://awra.org/meetings/Orlando2018/.

Subject Keywords

presentation,awra2018,HAND

How to cite

Tarboton, D., X. Zheng, D. Maidment, Y. Liu, S. Wang (2018). Using Digital Elevation Model Derived Height Above the Nearest Drainage for flood inundation mapping and determining river hydraulic geometry, HydroShare, http://www.hydroshare.org/resource/8ffaac4118db485badbe48bed96633be

This resource is shared under the Creative Commons Attribution CC BY.

 http://creativecommons.org/licenses/by/4.0/
CC-BY

Sharing status:

  • Public Resource  Public
  • Sharable Resource  Shareable

Content

Download All Content as Zipped BagIt Archive
Learn more about the Bagit archive format

Authors

The people or organizations that created the intellectual content of the resource.

Name Organization Address Phone Author Identifiers
David Tarboton Utah State University Utah, US 4357973172
Xing Zheng University of Texas at Austin
David Maidment University of Texas at Austin
Yan Liu UIUC/CyberGIS
Shaowen Wang University of Illinois
Relations
isPartOf: 2018 AWRA Spring Specialty Conference: Geographic Information Systems (GIS) and Water Resources X, Orlando, Florida, April 23-25, http://awra.org/meetings/Orlando2018/.

Credits

This resource was created using funding from the following sources:
Agency Name Award Title Award Number
National Science Foundation Collaborative Research: SI2-SSI: Cyberinfrastructure for Advancing Hydrologic Knowledge through Collaborative Integration of Data Science, Modeling and Analysis OCI 1148453 and 1148090.
National Science Foundation SI2-SSI: CyberGIS Software Integration for Sustained Geospatial Innovation OCI 1047916, 1343785, and 1443080

Ratings

Be the first one to  +1 this.  (You need to be logged in to rate this.)

Comments

There are currently no comments

New Comment

required