In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Resource License Agreement
This resource is shared under the Creative Commons Attribution CC BY.
In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Copy resource bag to your iRODS user zone
Are you sure you want to copy this resource bag to your iRODS user zone?
Please wait for the process to complete.
Redirecting to the referenced web URL
The content you have requested to access is not stored in HydroShare, and we can’t guarantee its availability,
quality, security, or size. If the externally linked content is large, access may take time.
Get file URL
Choose coordinates
Gap-Free Global Annual Soil Moisture: 15km Grids for 1991-2018
Soil moisture is key for quantifying soil-atmosphere interactions and the ESA-CCI (European Space Agency-Climate Change Initiative) provides historical (>30 years) satellite soil moisture global grids with spatial resolution of ~27km. This dataset is incomplete (contains gaps) due to conditions such as dense vegetation or extremely dry surfaces. Here we provide a framework to increase the spatial resolution and fill gaps (reporting associated uncertainty) of the ESA-CCI (v4.5) soil moisture dataset. The outcome is a new dataset of gap-free global mean annual soil moisture and uncertainty for 28 years (1991-2018) across 15km grids. We compare the performance of machine learning odels using only terrain parameters (e.g., slope, wetness index) against predictions using terrain parameters, bioclimatic information, and soil type classes. We use independent field information from the International Soil Moisture Network (ISMN, n=13376) and in-situ precipitation records (n=171) only for model evaluation purposes. Using only terrain parameters to predict soil moisture results in a parsimonious approach comparable with a more complex model that includes additional bioclimatic and soil information. The correlation between observed and predicted soil moisture values varies from r=0.69 to r=0.87 with root mean squared errors (RMSE) around 0.03 and 0.04 m3/m3. Our soil moisture predictions improve: (a) the correlation with the ISMN (when compared with the original ESA-CCI product) from r=0.30 (RMSE=0.09 m3/m3 ) to r=0.66 (RMSE=0.05 m3/m3 ); and (b) the correlation with local precipitation records across boreal (from r=<0.3 up r=0.49) or tropical areas (from r=<0.3 to r=0.46) which are currently poorly represented in the ISMN. Temporal trends show a decline of global annual soil moisture using: a) data from the ISMN (-1.5 [-1.8, -1.24]%, b) associated locations from the original ESA-CCI dataset (- 0.87[-1.54, -0.17]%), c) associated locations from predictions based on terrain parameters (-0.85[-1.01, -0.49]%), and d)associated locations from predictions including bioclimatic and soil type classes (-0.68[-0.91, -0.45]%). Our parsimonious downscaled soil moisture predictions are independent of climate variables and vegetation indexes, to avoid potential spurious correlations in future research, and they complement information about soil moisture dynamics worldwide.
Deleting all keywords will set the resource sharing status to private.
Resource Level Coverage
Spatial
Coordinate System/Geographic Projection:
WGS 84 EPSG:4326
Coordinate Units:
Decimal degrees
Place/Area Name:
Global coverage
North Latitude
90.0000°
East Longitude
180.0000°
South Latitude
-90.0000°
West Longitude
-180.0000°
Temporal
Start Date:
End Date:
Open
Preview
Download
Download zipped
Get file URL
Open referenced URL
Refresh
Select all
Content
This resource contains links to external content. Linked content is
NOT stored in HydroShare, and we can't guarantee its availability, quality, or
security.
Confirm files deletion
Consider downloading a copy of file(s) before deleting.
This folder contains the information required to reproduce the soil moisture predictions and the cross validation results presented in Guevara, Taufer and Vargas 2019, Gap-Free Global Annual Soil Moisture: 15km Grids for 1991-2016 (in review).The training soil moisture dataset used in this study is available (here: https://www.esa-soilmoisture-cci.org/) thanks to the ESA-CCI soil moisture initiative.
We provide two soil moisture annual predictions (1991-2018). The fist model predictions are based on terrain parameters (sm_kknn_terrain.tar.xz) (calculated on SAGA GIS using elevation data from https://www2.jpl.nasa.gov/srtm/) and the second model predictions include bioclimatic data (from http://www.fao.org/nr/gaez/en/) and soil type classes (from https://daac.ornl.gov/SOILS/guides/HWSD.html) as prediction factors (sm_kknn_eco_swc_terrain_15km..tar.xz). Each set of soil moisture predictions are delivered in independent folders. A model was generated for each year and on each folder there are accuracy reports for each model/year. Accuracy was calculated using 10-fold cross-validation.
We also provide soil moisture field data (from https://ismn.geo.tuwien.ac.at/en/)organized in an annual basis. This dataset is provided in a native R format *.rds. In this same format *.rds we also provide the organized set of prediction factors and a illustrative figure file *.pdf showing the data and results. All the code to reproduce these soil moisture predictions is also available here:
https://github.com/vargaslab/Global_Soil_Moisture.
Comments
There are currently no comments
New Comment