Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...
This resource contains some files/folders that have non-preferred characters in their name. Show non-conforming files/folders.
This resource contains content types with files that need to be updated to match with metadata changes. Show content type files that need updating.
Improving national water modeling: an intercomparison of two high-resolution, continental scale models, ParFlow-CONUS and WRF-Hydro configuration of the National Water Model - POSTERS
Authors: |
|
|
---|---|---|
Owners: |
|
This resource does not have an owner who is an active HydroShare user. Contact CUAHSI (help@cuahsi.org) for information on this resource. |
Type: | Resource | |
Storage: | The size of this resource is 8.6 MB | |
Created: | Jan 10, 2019 at 8:43 p.m. | |
Last updated: | May 21, 2019 at 5:20 p.m. | |
Citation: | See how to cite this resource |
Sharing Status: | Public |
---|---|
Views: | 2033 |
Downloads: | 72 |
+1 Votes: | 1 other +1 this |
Comments: | No comments (yet) |
Abstract
These posters are work completed during my masters program at the Colorado School of Mines in Golden, CO and under the advising of Dr. Reed Maxwell. The posters were presented at the European Geophysical Union in Vienna, Austria (April 2018) and Computational Methods in Water Resources in St. Malo, France (May 2018) conferences.
ABSTRACT
Development of integrated hydrology modeling systems, where subsurface, land-surface, and energy budget processes are represented, is an increasing trend. In hydrologic science, there is a need for more intricate models for comprehensive hydrologic forecasting and water management over large spatial areas, specifically the Continental US (CONUS). We compare streamflow output from two models developed for the CONUS: ParFlow-CONUS, using the integrated model ParFlow and WRF-Hydro.NWM, a configuration of the National Water Model version 1.2 using the National Center for Atmospheric Research, Weather Research and Forecasting hydrological modeling extension package WRF-Hydro. Accurately representing large domains remains a challenge considering the difficult task of representing complex hydrologic processes, computational expense, and extensive data needs. Intercomparing models helps disentangle process, parameter, and formulation differences. Results show that WRF-Hydro.NWM and PF-CONUS generally capture flow magnitude, but WRF-Hydro.NWM better captures flow timing. Spatial differences exist as well—both models accurately simulate the humid east, but struggle with the Great Plains and intermountain west. Simulations such as these will help improve physical process representation in hydrologic models and give greater confidence in large-scale forecasts.
Subject Keywords
Content
Credits
Funding Agencies
This resource was created using funding from the following sources:
Agency Name | Award Title | Award Number |
---|---|---|
Department of Energy | ||
American Association of University Women | Selected Professions Fellowship |
How to Cite
This resource is shared under the Creative Commons Attribution CC BY.
http://creativecommons.org/licenses/by/4.0/
Comments
There are currently no comments
New Comment