Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...
This resource contains some files/folders that have non-preferred characters in their name. Show non-conforming files/folders.
This resource contains content types with files that need to be updated to match with metadata changes. Show content type files that need updating.
Authors: |
|
|
---|---|---|
Owners: |
|
This resource does not have an owner who is an active HydroShare user. Contact CUAHSI (help@cuahsi.org) for information on this resource. |
Type: | Resource | |
Storage: | The size of this resource is 4.9 MB | |
Created: | Jun 18, 2020 at 2:56 a.m. | |
Last updated: | Jun 18, 2020 at 3 a.m. | |
Citation: | See how to cite this resource |
Sharing Status: | Public |
---|---|
Views: | 1375 |
Downloads: | 11 |
+1 Votes: | Be the first one to this. |
Comments: | No comments (yet) |
Abstract
This is a HydroShare resource to demonstrate an approach for open and reproducible Environmental Environmental Modeling during EarthCube2020 meeting (https://www.earthcube.org/EC2020)
You can start a Jupyter notebook ("First_NB_An_Approach_for_Open_Reproducible_Environmental_Modeling.ipynb") using "CyberGIS-Jupyter for water" on "Open with ..." Button.
Through the 1st notebook demonstration, you can experience open and reproducible environmental modeling using three main components which are online repository (HydroShare), computational environment (CyberGIS-Jupyter for water), and model API(pySUMMA).
Also, you will create a Sciunit container to encapsulate every dependency for SUMMA execution in CybeGIS-Jupyter into the Sciunit container.
Then you can move to the 2nd notebook (Second_NB_An_Approach_for_Open_Reproducible_Environmental_Modeling.ipynb) to evaluate reproducibility and replicability of the SUMMA Sciunit container in different cyberinfrastructure (CUAHSI JupyterHub).
Subject Keywords
Content
Related Resources
The content of this resource references | Clark, M. P., B. Nijssen, J. D. Lundquist, D. Kavetski, D. E. Rupp, R. A. Woods, J. E. Freer, E. D. Gutmann, A. W. Wood, D. J. Gochis, R. M. Rasmussen, D. G. Tarboton, V. Mahat, G. N. Flerchinger, D. G. Marks, 2015b: A unified approach for process-based hydrologic modeling: Part 2. Model implementation and case studies. Water Resources Research, http://doi.org/10.1002/2015WR017200. |
The content of this resource references | Clark, M. P., B. Nijssen, J. D. Lundquist, D. Kavetski, D. E. Rupp, R. A. Woods, J. E. Freer, E. D. Gutmann, A. W. Wood, L. D. Brekke, J. R. Arnold, D. J. Gochis, R. M. Rasmussen, 2015a: A unified approach for process-based hydrologic modeling: Part 1. Modeling concept. Water Resources Research, http://doi.org/10.1002/2015WR017198. |
The content of this resource is derived from | http://www.hydroshare.org/resource/75f31565dbd24c198450b9d37c6fcf74 |
Credits
Funding Agencies
This resource was created using funding from the following sources:
Agency Name | Award Title | Award Number |
---|---|---|
National Science Foundation | EarthCube Building Blocks: Collaborative Proposal: GeoTrust: Improving Sharing and Reproducibility of Geoscience Applications | ICER-1639655, ICER-1639759, ICER-1639696 |
National Science Foundation | Collaborative Research: SI2-SSI: Cyberinfrastructure for Advancing Hydrologic Knowledge through Collaborative Integration of Data Science, Modeling and Analysis | OAC-1664061, OAC-1664018, OAC-1664119 |
How to Cite
This resource is shared under the Creative Commons Attribution CC BY.
http://creativecommons.org/licenses/by/4.0/
Comments
There are currently no comments
New Comment