Hi, I'm an error. x

Cellular Automaton Vegetation with Gridded Meteorology

Authors: Sai S. Nudurupati · Erkan Istanbulluoglu · Jordan M. Adams · Daniel E. J. Hobley · Nicole M. Gasparini · Gregory E. Tucker · Eric W. H. Hutton
Owners: Christina Bandaragoda · Sai Nudurupati
Resource type:Generic
Created:Mar 22, 2017 at 6:05 a.m.
Last updated: Sep 07, 2017 at 7:29 p.m. by Christina Bandaragoda


This tutorial demonstrates implementation of the Cellular Automaton Tree-GRass-Shrub Simulator (CATGRaSS) [Zhou et al., 2013] on a flat domain. This model is built using components from the Landlab component library. CATGRaSS is spatially explicit model of plant coexistence. It simulates local ecohydrologic dynamics (soil moisture, transpiration, biomass) and spatial evolution of tree, grass, and shrub Plant Functional Types (PFT) driven by rainfall and solar radiation.

Each cell in the model grid can hold a single PFT or remain empty. Tree and shrub plants disperse seeds to their neighbors. Grass seeds are assumed to be available at each cell. Establishment of plants in empty cells is determined probabilistically based on water stress of each PFT. Plants with lower water stress have higher probability of establishment. Plant mortality is simulated probabilistically as a result of aging and drought stress. Fires and grazing will be added to this model soon.

This model (driver) contains:
- A local vegetation dynamics model that simulates storm and inter-storm water balance and ecohydrologic fluxes (ET, runoff), and plant biomass dynamics by coupling the following components:
- PrecipitationDistribution
- Radiation
- PotentialEvapotranspiration
- SoilMoisture
- Vegetation

- A spatially explicit probabilistic cellular automaton component that simulates plant competition by tracking establishment and mortality of plants based on soil moisture stress:
- VegCA

To run this Jupyter notebook, please make sure that the following files are in the same folder:
- cellular_automaton_vegetation_flat_domain.ipynb (this notebook)
- Inputs_Vegetation_CA.txt (Input parameters for the model)
- Ecohyd_functions_flat.py (Utility functions)

[Ref: Zhou, X, E. Istanbulluoglu, and E.R. Vivoni. "Modeling the ecohydrological role of aspect-controlled radiation on tree-grass-shrub coexistence in a semiarid climate." Water Resources Research 49.5 (2013): 2872-2895]

Subject Keywords

Ecohydrology,Tutorial,CUAHSI 2016,Flat Domain,Landlab v1.0

How to cite

Nudurupati, S. S., E. Istanbulluoglu, J. M. Adams, D. E. J. Hobley, N. M. Gasparini, G. E. Tucker, E. W. H. Hutton (2017). Cellular Automaton Vegetation with Gridded Meteorology, HydroShare, http://www.hydroshare.org/resource/d0860ddac0364b7089cc8d7be6476d3d

This resource is shared under the Creative Commons Attribution CC BY.


Sharing status:

  • Public Resource  Public
  • Sharable Resource  Shareable


Download All Content as Zipped BagIt Archive
Learn more about the Bagit archive format


The people or organizations that created the intellectual content of the resource.

Name Organization Address Phone Author Identifiers
Sai S. Nudurupati University of Washington - Seattle 159 Wilcox Hall
Erkan Istanbulluoglu University of Washington - Seattle 160 Wilcox Hall
Jordan M. Adams Tulane University
Daniel E. J. Hobley University of Colorado - Boulder
Nicole M. Gasparini Tulane University
Gregory E. Tucker University of Colorado - Boulder
Eric W. H. Hutton University of Colorado - Boulder
Derived From: http://www.hydroshare.org/resource/33ee1a9b1b53413ba9e8783150f01caa
This resource belongs to the following collections:
Title Owners Sharing Status My Permission
Landlab - HydroShare Notebook Demos from Team Meeting 2017 Christina Bandaragoda  Private &  Shareable None


This resource was created using funding from the following sources:
Agency Name Award Title Award Number
NSF Collaborative Research: SI2-SSI: Landlab: A Flexible, Open-Source Modeling Framework for Earth-Surface Dynamics 1450412


1 other +1 this.    (You need to be logged in to rate this.)


There are currently no comments

New Comment