In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Resource License Agreement
This resource is shared under the Creative Commons Attribution-NoCommercial CC BY-NC.
In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Copy resource bag to your iRODS user zone
Are you sure you want to copy this resource bag to your iRODS user zone?
Please wait for the process to complete.
Redirecting to the referenced web URL
The content you have requested to access is not stored in HydroShare, and we can’t guarantee its availability,
quality, security, or size. If the externally linked content is large, access may take time.
Get file URL
Choose coordinates
Data from Singha and Gorelick (2005), Saline tracer visualized with electrical resistivity tomography: field scale spatial moment analysis
Data from Singha, K. and Gorelick, S.M. (2005). Saline tracer visualized with electrical resistivity tomography: field scale spatial moment analysis. Water Resources Research, 41, W05023, https://doi.org/10.1029/2004WR003460, 17 p.
Cross-well electrical resistivity tomography (ERT) was used to monitor the migration of a saline tracer in a two-well pumping-injection experiment conducted at the Massachusetts Military Reservation in Cape Cod, Massachusetts. After injecting 2200 mg/Lof sodium chloride for 9 hours, ERT data sets were collected from four wells every 6 hours for 20 days. More than 180,000 resistance measurements were collected during the tracer test. Each ERT data set was inverted to produce a sequence of 3-D snapshot maps that track the plume. In addition to the ERT experiment a pumping test and an infiltration test were conducted to estimate horizontal and vertical hydraulic conductivity values. Using modified moment analysis of the electrical conductivity tomograms, the mass, center of mass, and spatial variance of the imaged tracer plume were estimated.Although the tomograms provide valuable insights into field-scale tracer migration behavior and aquifer heterogeneity, standard tomographic inversion and application of Archie’s law to convert electrical conductivities to solute concentration results in underestimation of tracer mass. Such underestimation is attributed to (1) reduced measurement sensitivity to electrical conductivity values with distance from the electrodes and (2) spatial smoothing (regularization) from tomographic inversion. The center of mass estimated from the ERT inversions coincided with that given by migration of the tracer plume using 3-D advective-dispersion simulation. The 3-D plumes seen using ERT exhibit greater apparent dispersion than the simulated plumes and greater temporal spreading than observed in field data of concentration breakthrough at the pumping well.
Deleting all keywords will set the resource sharing status to private.
Resource Level Coverage
Spatial
Coordinate System/Geographic Projection:
WGS 84 EPSG:4326
Coordinate Units:
Decimal degrees
Place/Area Name:
The Massachusetts Military Reservation
North Latitude
41.6839°
East Longitude
-70.4928°
South Latitude
41.6312°
West Longitude
-70.5948°
Temporal
Start Date:
End Date:
Open
Preview
Download
Download zipped
Get file URL
Open referenced URL
Refresh
Select all
Content
This resource contains links to external content. Linked content is
NOT stored in HydroShare, and we can't guarantee its availability, quality, or
security.
Confirm files deletion
Consider downloading a copy of file(s) before deleting.
Singha, K. and Gorelick, S.M. (2005). Saline tracer visualized with electrical resistivity tomography: field scale spatial moment analysis. Water Resources Research, 41, W05023, https://doi.org/10.1029/2004WR003460, 17 p.
Credits
Funding Agencies
This resource was created using funding from the following sources:
Agency Name
Award Title
Award Number
National Science Foundation
Mapping Aquifer Heterogeneity: Integrated Analysis of Electrical Resistance Tomography, Tracer Tests, and Hydraulic Data
EAR-0124262
Contributors
People or Organizations that contributed technically, materially, financially, or provided general support for the
creation of the resource's content but are not considered authors.
Note on the data structure of the files inside the ER_data_files folder: all *date*.xls files share the same format. The first column is the measurement # (7200 in total) and cycles from 1-1200 six times because the 3-D array was set up as six 2-D planes, so we could look at images in 2-D. Columns 3,5,7,9 are the electrode numbers used and 10 is the electrical resistance R.
The file alldata.xls in the ER_data_files folder isn't really needed; it is just all of the ER data files put into one data file, if that helps anyone. The strange header at the top (going from 15 to 25.2) is the date: the first data set is from July 15, the last from July 25, and the fractions are just the fraction of the day. This was made for simple plotting in Excel.
Comments
Kamini Singha 1 year, 1 month ago
Note on the data structure of the files inside the ER_data_files folder: all *date*.xls files share the same format. The first column is the measurement # (7200 in total) and cycles from 1-1200 six times because the 3-D array was set up as six 2-D planes, so we could look at images in 2-D. Columns 3,5,7,9 are the electrode numbers used and 10 is the electrical resistance R.
ReplyThe file alldata.xls in the ER_data_files folder isn't really needed; it is just all of the ER data files put into one data file, if that helps anyone. The strange header at the top (going from 15 to 25.2) is the date: the first data set is from July 15, the last from July 25, and the fractions are just the fraction of the day. This was made for simple plotting in Excel.
New Comment