Hi, I'm an error. x

Hydrologic Terrain Analysis Using Web Based Tools


Authors: David Tarboton · Nazmus Sazib · Anthony Michael Castronova · Yan Liu · Xing Zheng · David Maidment · Anthony Keith Aufdenkampe · Shaowen Wang
Owners: David Tarboton
Resource type:Composite Resource
Created:Apr 09, 2018 at 4:59 p.m.
Last updated: Apr 11, 2018 at 9:26 p.m. by David Tarboton

Abstract

Digital Elevation Models (DEM) are widely used to derive information for the modeling of hydrologic processes. The basic model for hydrologic terrain analysis involving hydrologic conditioning, determination of flow field (flow directions) and derivation of hydrologic derivatives is available in multiple software packages and GIS systems. However as areas of interest for terrain analysis have increased and DEM resolutions become finer there remain challenges related to data size, software and a platform to run it on, as well as opportunities to derive new kinds of information useful for hydrologic modeling. This presentation will illustrate new functionality associated with the TauDEM software (http://hydrology.usu.edu/taudem) and new web based deployments of TauDEM to make this capability more accessible and easier to use. Height Above Nearest Drainage (HAND) is a special case of distance down the flow field to an arbitrary target, with the target being a stream and distance measured vertically. HAND is one example of a general class of hydrologic proximity measures available in TauDEM. As we have implemented it, HAND uses multi-directional flow directions derived from a digital elevation model (DEM) using the Dinifinity method in TauDEM to determine the height of each grid cell above the nearest stream along the flow path from that cell to the stream. With this information, and the depth of flow in the stream, the potential for, and depth of flood inundation can be determined. Furthermore, by dividing streams into reaches or segments, the area draining to each reach can be isolated and a series of threshold depths applied to the grid of HAND values in that isolated reach catchment, to determine inundation volume, surface area and wetted bed area. Dividing these by length yields reach average cross section area, width, and wetted perimeter, information that is useful for hydraulic routing and stage-discharge rating calculations in hydrologic modeling. This presentation will describe the calculation of HAND and its use to determine hydraulic properties across the US for prediction of stage and flood inundation in each NHDPlus reach modeled by the US NOAA’s National Water Model. This presentation will also describe two web based deployments of TauDEM functionality. The first is within a Jupyter Notebook web application attached to HydroShare that provides users the ability to execute TauDEM on this cloud infrastructure without the limitations associated with desktop software installation and data/computational capacity. The second is a web based rapid watershed delineation function deployed as part of Model My Watershed (https://app.wikiwatershed.org/) that enables delineation of watersheds, based on NHDPlus gridded data anywhere in the continental US for watershed based hydrologic modeling and analysis.

Presentation for European Geophysical Union Meeting, April 2018, Vienna. Tarboton, D. G., N. Sazib, A. Castronova, Y. Liu, X. Zheng, D. Maidment, A. Aufdenkampe and S. Wang, (2018), "Hydrologic Terrain Analysis Using Web Based Tools," European Geophysical Union General Assembly, Vienna, April 12, Geophysical Research Abstracts 20, EGU2018-10337, https://meetingorganizer.copernicus.org/EGU2018/EGU2018-10337.pdf.

Subject Keywords

TauDEM,EGU2018,Presentation,Wikiwatershed

How to cite

Tarboton, D., N. Sazib, A. M. Castronova, Y. Liu, X. Zheng, D. Maidment, A. K. Aufdenkampe, S. Wang (2018). Hydrologic Terrain Analysis Using Web Based Tools, HydroShare, http://www.hydroshare.org/resource/e1d4f2aff7d84f79b901595f6ea48368

This resource is shared under the Creative Commons Attribution CC BY.

 http://creativecommons.org/licenses/by/4.0/
CC-BY

Sharing status:

  • Public Resource  Public
  • Sharable Resource  Shareable

Content

Download All Content as Zipped BagIt Archive
Learn more about the Bagit archive format

Authors

The people or organizations that created the intellectual content of the resource.

Name Organization Address Phone Author Identifiers
David Tarboton Utah State University 4357973172
Nazmus Sazib
Anthony Michael Castronova CUAHSI MA, US 3399334127
Yan Liu UIUC/CyberGIS
Xing Zheng
David Maidment University of Texas at Austin
Anthony Keith Aufdenkampe LimnoTech Minnesota, US 651-219-4076
Shaowen Wang
Relations
cites: Tarboton, D. G., N. Sazib, A. Castronova, Y. Liu, X. Zheng, D. Maidment, A. Aufdenkampe and S. Wang, (2018), "Hydrologic Terrain Analysis UsingWeb Based Tools," European Geophysical Union General Assembly, Vienna, April 12, Geophysical Research Abstracts 20, EGU2018-10337, https://meetingorganizer.copernicus.org/EGU2018/EGU2018-10337.pdf.
cites: Tarboton, D., I. Garousi-Nejad (2018). Logan Digital Elevation Model Jupyter Notebook Hydrologic Terrain Analysis Hands On Exercise Start, HydroShare, http://www.hydroshare.org/resource/f186b3fd55fd49e6bb761473e2a49b7f

Credits

This resource was created using funding from the following sources:
Agency Name Award Title Award Number
National Science Foundation Collaborative Research: SI2-SSI: Cyberinfrastructure for Advancing Hydrologic Knowledge through Collaborative Integration of Data Science, Modeling and Analysis ACI 1664061, 1664018, 1664119
William Penn Foundation, Delaware River Watershed Initiative WikiWatershed Web Toolkit for Advancing Water Quality Restoration in Delaware River Basin 2017 Award to Stroud Water Research Center

Ratings

Be the first one to  +1 this.  (You need to be logged in to rate this.)

Comments

There are currently no comments

New Comment

required