Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...
This resource contains some files/folders that have non-preferred characters in their name. Show non-conforming files/folders.
This resource contains content types with files that need to be updated to match with metadata changes. Show content type files that need updating.
High-Resolution Fibre-Optic Temperature Sensing: A New Tool to Study the Two-Dimensional Structure of Atmospheric Surface-Layer Flow
Authors: |
|
|
---|---|---|
Owners: |
|
This resource does not have an owner who is an active HydroShare user. Contact CUAHSI (help@cuahsi.org) for information on this resource. |
Type: | Resource | |
Storage: | The size of this resource is 922.0 KB | |
Created: | Apr 01, 2018 at 6:15 p.m. | |
Last updated: | Jan 02, 2019 at 10:42 p.m. | |
Citation: | See how to cite this resource |
Sharing Status: | Public |
---|---|
Views: | 1822 |
Downloads: | 46 |
+1 Votes: | Be the first one to this. |
Comments: | No comments (yet) |
Abstract
We present a novel approach based on fibre-optic distributed temperature sensing (DTS) to measure the two-dimensional thermal structure of the surface layer at high resolution (0.25m, ≈0.5 Hz). Air temperature observations obtained from a vertically-oriented fibre-optics array of approximate dimensions 8m×8m and sonic anemometer data from two levels were collected over a short grass field located in the flat bottom of a wide valley with moderate surface heterogeneity. The objectives of the study were to evaluate the potential of the DTS technique to study small-scale processes in the surface layer over a wide range of atmospheric stability, and to analyze the space–time dynamics of transient cold-air pools in the calm boundary layer. The time response and precision of the fibre-based temperatures were adequate to resolve individual sub-metre sized turbulent and non-turbulent structures, of time scales of seconds, in the convective, neutral, and stable surface layer. Meaningful sensible heat fluxes were computed using the eddy-covariance technique when combined with vertical wind observations. We present a framework that determines the optimal environmental conditions for applying the fibre-optics technique in the surface layer and identifies areas for potentially significant improvements of the DTS performance. The top of the transient cold-air pool was highly non-stationary indicating a superposition of perturbations of different time and length scales. Vertical eddy scales in the strongly stratified transient cold-air pool derived from the DTS data agreed well with the buoyancy length scale computed using the vertical velocity variance and the Brunt–Vaisala frequency, while scales for weak stratification disagreed. The high-resolution DTS technique opens a new window into spatially sampling geophysical fluid flows including turbulent energy exchange.
Raw project data will be available in 2020 by contacting ctemps@unr.edu
Subject Keywords
Coverage
Temporal
Start Date: | |
---|---|
End Date: |
Content
How to Cite
This resource is shared under the Creative Commons Attribution CC BY.
http://creativecommons.org/licenses/by/4.0/
Comments
There are currently no comments
New Comment