Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...
This resource contains some files/folders that have non-preferred characters in their name. Show non-conforming files/folders.
This resource contains content types with files that need to be updated to match with metadata changes. Show content type files that need updating.
Authors: |
|
|
---|---|---|
Owners: |
|
This resource does not have an owner who is an active HydroShare user. Contact CUAHSI (help@cuahsi.org) to determine if accessing this resource is possible. |
Type: | Resource | |
Storage: | The size of this resource is 2.1 GB | |
Created: | Apr 17, 2025 at 8:17 p.m. | |
Last updated: | Apr 24, 2025 at 3:43 p.m. | |
Citation: | See how to cite this resource | |
Content types: | File Set Content |
Sharing Status: | Discoverable |
---|---|
Views: | 50 |
Downloads: | 0 |
+1 Votes: | Be the first one to this. |
Comments: | No comments (yet) |
Abstract
This project developed a comprehensive data management system designed to support collaborative groundwater research across institutions by establishing a centralized, structured database for hydrologic time series data. Built on the Observations Data Model (ODM), the system stores time series data and metadata in a relational SQLite database. Key project components included database construction, automation of data formatting and importation, development of analytical and visualization tools, and integration with ArcGIS for geospatial representation. The data import workflow standardizes and validates diverse .csv datasets by aligning them with ODM formatting. A Python-based module was created to facilitate data retrieval, analysis, visualization, and export, while an interactive map feature enables users to explore site-specific data availability. Additionally, a custom ArcGIS script was implemented to generate maps that incorporate stream networks, site locations, and watershed boundaries using DEMs from USGS sources. The system was tested using real-world datasets from groundwater wells and surface water gages across Utah, demonstrating its flexibility in handling diverse formats and parameters. The relational structure enabled efficient querying and visualization, and the developed tools promoted accessibility and alignment with FAIR principles.
Subject Keywords
Content
How to Cite
This resource is shared under the Creative Commons Attribution CC BY.
http://creativecommons.org/licenses/by/4.0/
Comments
There are currently no comments
New Comment