Hi, I'm an error. x

Dynamic lateral, vertical, and longitudinal hydrologic connectivity drive runoff and carbon export across watershed scales


Authors: Margaret Zimmer
Owners: Liz Tran
Resource type:Composite Resource
Created:Aug 20, 2018 at 5:50 p.m.
Last updated: Aug 20, 2018 at 6:26 p.m. by Liz Tran

Abstract

Dynamic Connectivity in the Landscape
Chair: Adam Ward (Indiana University)
Connectivity between different locations on the landscape is defined by the movement of water, solutes, energy, and organisms. The magnitude and persistence of connections is critical to prediction of ecological functions, many of which are mediated by hydrological stores and fluxes. In this session we consider connectivity as a spatially and temporally variable process in catchments and river systems.

"Dynamic lateral, vertical, and longitudinal hydrologic connectivity drive runoff and carbon export across watershed scales"
Speaker: Margaret Zimmer (University of California Santa Cruz)

The influence of temporally dynamic lateral, vertical, and longitudinal connectivity of runoff source areas on hydrologic and biogeochemical fluxes across watershed scales is poorly understood. To address this, we monitored the timing, magnitude and chemical composition of precipitation, runoff, and runoff-generating flow paths in nested 3.3 and 48.4 ha watersheds (North Carolina, USA). These watersheds are comprised of ephemeral and intermittent runoff-producing headwaters and perennial runoff-producing lowlands. We monitored the active surface drainage network, which reflected connectivity to, and contributions from, runoff source areas that shifted within baseflow and stormflow conditions. The overall importance of deeper, baseflow-associated and shallower, stormflow-activated source area contributions varied across watershed scales and influenced dissolved organic carbon (DOC) export. The dominant temporal variability of in-stream DOC was driven by frequent event-based flushing of shallow soil zones and annual replenishment. Our findings suggest that hydro-biogeochemical signals at larger watershed outlets can be driven by the expansion, contraction, and connection of lateral, longitudinal, and vertical source areas that reflect distinct runoff generation processes.

Subject Keywords

watershed scales,hydrologic connectivity,biennial

How to cite

Zimmer, M. (2018). Dynamic lateral, vertical, and longitudinal hydrologic connectivity drive runoff and carbon export across watershed scales, HydroShare, http://www.hydroshare.org/resource/a657a543cee14ec1ade5c75d02ed6cb4

This resource is shared under the Creative Commons Attribution CC BY.

 http://creativecommons.org/licenses/by/4.0/
CC-BY

Sharing status:

  • Public Resource  Public
  • Sharable Resource  Shareable

Content

Download All Content as Zipped BagIt Archive
Learn more about the Bagit archive format

Authors

The people or organizations that created the intellectual content of the resource.

Name Organization Address Phone Author Identifiers
Margaret Zimmer University of California, Santa Cruz
This resource belongs to the following collections:
Title Owners Sharing Status My Permission
CUAHSI's 2018 Biennial Colloquium Liz Tran  Public &  Shareable Open Access

Ratings

Be the first one to  +1 this.  (You need to be logged in to rate this.)

Comments

There are currently no comments

New Comment

required