Spatially coherent variability in modern orographic precipitation produces asymmetric paleoglacier extents in flowline models: Olympic Mountains, USA

Owners: This resource does not have an owner who is an active HydroShare user. Contact CUAHSI ( for information on this resource.
Type: Collection
Storage: The size of this collection is 394 bytes
Created: Jun 23, 2022 at 3:04 a.m.
Last updated: May 22, 2023 at 3:59 p.m.
Citation: See how to cite this resource
Sharing Status: Public
Views: 332
Downloads: 6
+1 Votes: Be the first one to 
Comments: No comments (yet)


Glaciers are sensitive to temporal climate variability. Glacier sensitivity to spatial variability in climate has been much less studied. The Olympic Mountains of Washington State, USA, experience a pronounced orographic precipitation gradient with modern annual precipitation ranging between ~6.5 and ~0.5 meters water equivalent. In the Quinault valley, on the wet side of the range, a glacier extended onto the coastal plain reaching a maximum position during the early Wisconsin Episode glaciation. In the dry lee, there here is no evidence of a large glacier in the Elwha valley. We hypothesize that asymmetry in past glacier extent was driven by spatial variability in precipitation. To evaluate this hypothesis, we constrain the past precipitation gradient, and model glacier extent. We explore variability in observed and modelled precipitation gradients over timescales from 6 hours to ~100 years. Across three data sets, basin-averaged precipitation in the Elwha is 54% of that in the Quinault. Our analysis overwhelmingly indicates spatially coherent variability in precipitation across the peninsula. We conclude that the past precipitation gradient was likely similar to the modern gradient. We use a one-dimensional glacier flowline model, driven by sea-level summer temperature and annual precipitation to approximate glacier extent in the Quinault and Elwha basins. We find several equilibrium states for the Quinault glacier at the mapped maximum position within paleoclimate constraints for cooling and drying, relative to present-day conditions. Assuming stable precipitation gradients, we model Elwha glacier extent for the climates of these equilibria. At the warm end of the paleoclimate constraint (10.5˚C), a small valley glacier occurs in the high headwaters of the Elwha valley. Yet, for the cooler end of the allowable paleoclimate (7˚C), the Elwha glacier advances to a narrow notch in the valley, thickens, and rapidly extends far beyond the likely true maximum extent. Therefore, we suggest that the last glacial maximum climate was more likely to have been relatively warm. Alternatively, spatially variable drivers of ablation including differences in cloudiness could have contributed to asymmetry in glacier extent. Future research to constrain past precipitation gradients and evaluate their impact on glacier dynamics is needed to better interpret the climatic significance of past glaciation and to predict future response of glaciers to climate change.

Subject Keywords



Coordinate System/Geographic Projection:
WGS84 EPSG:4326
Coordinate Units:
['Decimal degrees']
Place/Area Name:
Olympic Peninsula
North Latitude
East Longitude
South Latitude
West Longitude

Collection Contents

Add Title Type Owners Sharing Status Remove
Olympic Mountains Glacier Flowline Model Resource Andrew Margason Public
Olympic Mountains Climate Analysis Resource Andrew Margason Public

Learn more about the BagIt download

How to Cite

Margason, A., A. Anders, R. J. Conrick, G. H. Roe (2023). Spatially coherent variability in modern orographic precipitation produces asymmetric paleoglacier extents in flowline models: Olympic Mountains, USA, HydroShare,

This resource is shared under the Creative Commons Attribution CC BY.


There are currently no comments

New Comment