Hi, I'm an error. x

Daniele Tonina

University of Idaho | Associate Professor

Subject Areas: Ecohydraulics, surface subsurface interaction

 Recent activity

ABSTRACT:

Particle image velocimetry, PIV, is a non-invasive technique for measuring velocity fields. It is especially powerful when coupled with refractive index-matching (RIM) to map velocity fields around solid objects. The solid objects are typically removed from the flow field with a masking approach before performing the PIV analysis and mapping the velocity field. However, imasking required a-priory information on solid location and their geometric shape which is difficult in to select them when PIV is done with RIM. Here we stored the data used in the contribution "Particle Seeded Grains to Identify Highly Irregular Solid Boundaries and Simplify PIV measurements" where a new method is presented.

Show More

ABSTRACT:

Monitoring streambed elevation changes is important for many engineering and ecological applications. This contribution contains the data and the numerical code written in R used in the publication of DeWeese et al, (2017), who tested a new methodology based on stream water temperature as a signal to monitor local streambed elevation changes at the daily time scale. This contribution contains: (1) laboratory experiment time series of water temperature in the surface and within the sediment, (2) times series of sediment surface elevation changes in the laboratory, (3) field experiment time series of sediment elevation and (4) field experiment time series of surface and pore waters temperatures and (5) R code of the model to analyze the temperature data to extract streambed elevation changes and interstitial flows.

Reference:Timothy DeWeese, Daniele Tonina, Charles Luce, Monitoring streambed scour/deposition under non-ideal temperature signal and flood conditions, Water Resources Research, doi: 10.1002/2017WR020632

Show More

 Contact

Resources
All 0
Collection 0
Composite Resource 0
Generic 0
Geographic Feature 0
Geographic Raster 0
HIS Referenced Time Series 0
Model Instance 0
Model Program 0
MODFLOW Model Instance Resource 0
Multidimensional (NetCDF) 0
Script Resource 0
SWAT Model Instance 0
Time Series 0
Web App 0
Composite Resource Composite Resource

ABSTRACT:

Monitoring streambed elevation changes is important for many engineering and ecological applications. This contribution contains the data and the numerical code written in R used in the publication of DeWeese et al, (2017), who tested a new methodology based on stream water temperature as a signal to monitor local streambed elevation changes at the daily time scale. This contribution contains: (1) laboratory experiment time series of water temperature in the surface and within the sediment, (2) times series of sediment surface elevation changes in the laboratory, (3) field experiment time series of sediment elevation and (4) field experiment time series of surface and pore waters temperatures and (5) R code of the model to analyze the temperature data to extract streambed elevation changes and interstitial flows.

Reference:Timothy DeWeese, Daniele Tonina, Charles Luce, Monitoring streambed scour/deposition under non-ideal temperature signal and flood conditions, Water Resources Research, doi: 10.1002/2017WR020632

Show More
Composite Resource Composite Resource
Data for Particle Seeded Grains to Identify Highly Irregular Solid Boundaries and Simplify PIV measurements
Created: March 18, 2019, 10:30 p.m.
Authors: Basham, William · Budwig, Ralph · Daniele Tonina

ABSTRACT:

Particle image velocimetry, PIV, is a non-invasive technique for measuring velocity fields. It is especially powerful when coupled with refractive index-matching (RIM) to map velocity fields around solid objects. The solid objects are typically removed from the flow field with a masking approach before performing the PIV analysis and mapping the velocity field. However, imasking required a-priory information on solid location and their geometric shape which is difficult in to select them when PIV is done with RIM. Here we stored the data used in the contribution "Particle Seeded Grains to Identify Highly Irregular Solid Boundaries and Simplify PIV measurements" where a new method is presented.

Show More