Eric Edwards

Utah State University;North Carolina State University | Assistant Professor

Subject Areas: Economics

 Recent Activity

ABSTRACT:

This resource contains data and code for the analysis and tables in: Edwards, E.C. What Lies Beneath? Aquifer Heterogeneity and the Economics of Groundwater Management. 2016. Journal of the Association of Environmental and Resource Economists, vol. 3 no. 2, pp. 453-91.

Show More

ABSTRACT:

Data collection on water the potential for water markets to address Great Salt Lake water conservation needs.

To create cost estimates we build on the approach of Edwards et al (2017) to create conservation cost curves estimates for each of the Bear River, Weber River, and Jordan River watersheds. We designate potential conservation measures as occurring in the agricultural or urban sectors. Estimates come from other sources and are then applied to the case at hand. Overall we estimate the conservation potential and cost savings of 15 measures, shown in the table. While the list is not comprehensive, efforts were made to include the measures likely to be implemented.

Conservation measures by category.
Urban Residential: low-flow toilets
Residential: low-flow showers
Residential: high-efficiency clothes washers
Residential irrigation: rainwater harvesting
Residential irrigation: watering at night
Residential irrigation: scheduling
Residential irrigation: partial turf conversion
Institutional irrigation: watering at night
Institutional irrigation: scheduling
Commercial irrigation: watering at night
Commercial irrigation: scheduling
Secondary wastewater reuse
Agriculture Conversion to sprinkler irrigation
Improved irrigation efficiency
Canal piping

For each conservation we estimate the quantity of water that could be conserved as well as the cost of conserving that water. We create a low, baseline, and high estimate of costs for each measure. We also create a high, baseline, and low estimate of the amount of water made available by each measure. The low cost estimate is combined with the high water availability estimate to arrive at an upper bound of each water supply curve; similarly the high-cost and low water-availability estimates are combined to create a lower-bound.

Show More
Resources
All 0
Collection 0
Composite Resource 0
Generic 0
Geographic Feature 0
Geographic Raster 0
HIS Referenced Time Series 0
Model Instance 0
Model Program 0
MODFLOW Model Instance Resource 0
Multidimensional (NetCDF) 0
Script Resource 0
SWAT Model Instance 0
Time Series 0
Web App 0
Composite Resource Composite Resource
Great Salt Lake Water Markets
Created: June 25, 2018, 5:34 p.m.
Authors: Eric Edwards ยท Sarah Null

ABSTRACT:

Data collection on water the potential for water markets to address Great Salt Lake water conservation needs.

To create cost estimates we build on the approach of Edwards et al (2017) to create conservation cost curves estimates for each of the Bear River, Weber River, and Jordan River watersheds. We designate potential conservation measures as occurring in the agricultural or urban sectors. Estimates come from other sources and are then applied to the case at hand. Overall we estimate the conservation potential and cost savings of 15 measures, shown in the table. While the list is not comprehensive, efforts were made to include the measures likely to be implemented.

Conservation measures by category.
Urban Residential: low-flow toilets
Residential: low-flow showers
Residential: high-efficiency clothes washers
Residential irrigation: rainwater harvesting
Residential irrigation: watering at night
Residential irrigation: scheduling
Residential irrigation: partial turf conversion
Institutional irrigation: watering at night
Institutional irrigation: scheduling
Commercial irrigation: watering at night
Commercial irrigation: scheduling
Secondary wastewater reuse
Agriculture Conversion to sprinkler irrigation
Improved irrigation efficiency
Canal piping

For each conservation we estimate the quantity of water that could be conserved as well as the cost of conserving that water. We create a low, baseline, and high estimate of costs for each measure. We also create a high, baseline, and low estimate of the amount of water made available by each measure. The low cost estimate is combined with the high water availability estimate to arrive at an upper bound of each water supply curve; similarly the high-cost and low water-availability estimates are combined to create a lower-bound.

Show More
Composite Resource Composite Resource

ABSTRACT:

This resource contains data and code for the analysis and tables in: Edwards, E.C. What Lies Beneath? Aquifer Heterogeneity and the Economics of Groundwater Management. 2016. Journal of the Association of Environmental and Resource Economists, vol. 3 no. 2, pp. 453-91.

Show More