Hi, I'm an error. x

Dallas Helen Abbott

LDEO;Lamont Doherty Earth Observatory of Columbia University and City College | Research Scientist

Subject Areas: Earth Science

 Recent Activity

ABSTRACT:

Title: Dataset: Temperatures and flow rates for some springs in New England, 2017-18

Authors: Dallas Abbott1, William Menke1, Juliette Lamoureux2, Dionne Hutson2 and Alyssa Marrero3

1Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York
2City College of New York, New York, New York
3Kingsborough Community College, Brooklyn, New York
Summary: In 2017-2018, we visited a suite of about 80 springs in New York and New England (USA). We measured water temperature with a Lascar EL-WIFI-TP digital temperature logger (0.1°C precision) at the closest accessible point to the source, which was usually the reservoir inside a spring house or the outflow pipe from a spring house. When both reservoir and outflow pipe were accessible, we found that temperatures agreed to within ±0.2°C. We also measured the flow rate of the spring with a bucket and a stopwatch, with a repeatability of about ±10%.

A temperature anomaly ∆T was determined for each spring by subtracting the annual average temperature at the spring site. Annually averaged temperatures are rarely available for spring sites but are available for airports via the National Oceanic and Atmospheric Administration’s (NOAA’s) National Center for Environmental Information. We therefore used the annually averaged temperature for the nearest airport (typically ~10-20 km away), corrected to the elevation of the spring using the dry adiabatic lapse rate of 9.8°C/km.

Data was used in the following paper:

Menke, W., Lamoureux, J., Abbott, D., Hopper, E., Hutson, D. and Marrero, A., 2018. Crustal heating and lithospheric alteration and erosion associated with asthenospheric upwelling beneath southern New England (USA). Journal of Geophysical Research: Solid Earth, 123(10), pp.8995-9008.

Show More

 Contact

Resources
All 0
Collection 0
Composite Resource 0
Generic 0
Geographic Feature 0
Geographic Raster 0
HIS Referenced Time Series 0
Model Instance 0
Model Program 0
MODFLOW Model Instance Resource 0
Multidimensional (NetCDF) 0
Script Resource 0
SWAT Model Instance 0
Time Series 0
Web App 0
Generic Generic
Spring Temperature Data Set from New York and New England
Created: March 2, 2019, 12:16 a.m.
Authors: Dallas Abbott

ABSTRACT:

Title: Dataset: Temperatures and flow rates for some springs in New England, 2017-18

Authors: Dallas Abbott1, William Menke1, Juliette Lamoureux2, Dionne Hutson2 and Alyssa Marrero3

1Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York
2City College of New York, New York, New York
3Kingsborough Community College, Brooklyn, New York
Summary: In 2017-2018, we visited a suite of about 80 springs in New York and New England (USA). We measured water temperature with a Lascar EL-WIFI-TP digital temperature logger (0.1°C precision) at the closest accessible point to the source, which was usually the reservoir inside a spring house or the outflow pipe from a spring house. When both reservoir and outflow pipe were accessible, we found that temperatures agreed to within ±0.2°C. We also measured the flow rate of the spring with a bucket and a stopwatch, with a repeatability of about ±10%.

A temperature anomaly ∆T was determined for each spring by subtracting the annual average temperature at the spring site. Annually averaged temperatures are rarely available for spring sites but are available for airports via the National Oceanic and Atmospheric Administration’s (NOAA’s) National Center for Environmental Information. We therefore used the annually averaged temperature for the nearest airport (typically ~10-20 km away), corrected to the elevation of the spring using the dry adiabatic lapse rate of 9.8°C/km.

Data was used in the following paper:

Menke, W., Lamoureux, J., Abbott, D., Hopper, E., Hutson, D. and Marrero, A., 2018. Crustal heating and lithospheric alteration and erosion associated with asthenospheric upwelling beneath southern New England (USA). Journal of Geophysical Research: Solid Earth, 123(10), pp.8995-9008.

Show More