Emily Martin

Utah State University

 Recent Activity

ABSTRACT:

One of the greatest threats to Great Salt Lake wetlands is the invasion of Phragmites australis. Recent research has highlighted effective control strategies for Phragmites, however natural recolonization of native plants needed to support wetland functions has been limited. Seeding is a feasible restoration option, however seedling mortality is often high. Understanding the mechanisms that drive early seedling outcomes by quantifying regeneration traits can improve our ability to manipulate and predict restoration actions. Additionally, managers involved in wetland restoration need to know how many seeds to sow, which sites should be prioritized for restoration, and when they should seed. I developed a simulation model to explore changes in native and invasive seed germination across initial seeding density, restoration site, and seasonal timing scenarios. Additionally, I incorporated the influence of seed mass on native species germination into my model. This approach represents a starting point for developing an important management tool that can be used to identify targeted, cost-effective wetland restoration strategies following Phragmites treatment.

Show More

 Contact

Resources
All 0
Collection 0
Composite Resource 0
Generic 0
Geographic Feature 0
Geographic Raster 0
HIS Referenced Time Series 0
Model Instance 0
Model Program 0
MODFLOW Model Instance Resource 0
Multidimensional (NetCDF) 0
Script Resource 0
SWAT Model Instance 0
Time Series 0
Web App 0
Composite Resource Composite Resource

ABSTRACT:

One of the greatest threats to Great Salt Lake wetlands is the invasion of Phragmites australis. Recent research has highlighted effective control strategies for Phragmites, however natural recolonization of native plants needed to support wetland functions has been limited. Seeding is a feasible restoration option, however seedling mortality is often high. Understanding the mechanisms that drive early seedling outcomes by quantifying regeneration traits can improve our ability to manipulate and predict restoration actions. Additionally, managers involved in wetland restoration need to know how many seeds to sow, which sites should be prioritized for restoration, and when they should seed. I developed a simulation model to explore changes in native and invasive seed germination across initial seeding density, restoration site, and seasonal timing scenarios. Additionally, I incorporated the influence of seed mass on native species germination into my model. This approach represents a starting point for developing an important management tool that can be used to identify targeted, cost-effective wetland restoration strategies following Phragmites treatment.

Show More