Xiaolong Geng

University of Delaware | Researcher

Subject Areas: Coastal Hydrology

 Recent Activity

ABSTRACT:

The interactions between the atmosphere, ocean, and beach in the swash zone are dynamic, influencing water flux and solute exchange across the land-sea interface. However, the integrated role of these interactions in governing transport processes within the swash zone remains unexplored. This study employs groundwater simulations to examine the combined effects of waves and evaporation on subsurface flow and salinity dynamics in a shallow beach environment. Our simulations reveal that wave motion generates a saline plume beneath the swash zone, where evaporation induces hypersalinity near the sand surface. This leads to the formation of a hypersaline plume beneath the swash zone during periods of wave recession, which extends vertically downward, driven by the resulting vertical density gradients. This hypersaline plume moves landward and down the beachface due to wave-induced seawater infiltration and is subsequently diluted by the surrounding saline groundwater. Furthermore, swash motion increases near-surface moisture, leading to an elevated evaporation rate, with dynamic fluctuations in both moisture and evaporation rate due to high-frequency surface inundation caused by individual waves. Notably, the highest evaporation rates on the swash zone surface do not always correspond to the greatest elevations of salt concentration within the swash zone. This is because optimal moisture is also required – neither too low to impede evaporation nor too high to dilute accumulated salt near the surface. These insights are crucial for enhancing our understanding of coastal groundwater flow, biogeochemical conditions, and the subsequent nutrient cycling and contaminant transport in coastal zones.

Show More

ABSTRACT:

Groundwater mixing dynamics play a crucial role in the biogeochemical cycling of shallow wetlands. In this paper, we conducted groundwater simulations to investigate the combined effects of evaporation and local heterogeneity on mixing dynamics in shallow wetland sediments. The results show that evaporation causes groundwater and solutes to upwell from deep sediments to the surface. As the solute reaches the surface, evaporation enhances the accumulation of the solute near the surface, resulting in a higher solute concentration than in deep sediments. Mapping of flow topology reveals that local heterogeneity generates spatially varied mixing patterns mainly along preferential flow pathways. The upwelling of groundwater induced by surface evaporation through heterogeneous sediments is likely to create distinct mixing hotspots that differ spatially from those generated by lateral preferential flows driven by large-scale hydraulic gradients, which enhances the overall mixing in the subsurface. These findings have strong implications for biogeochemical processing in wetlands.

Show More

ABSTRACT:

Studies of coastal groundwater dynamics often assume two-dimensional (2D) flow and transport along a shore-perpendicular cross-section. We show that along-shore movement of groundwater may also be significant in heterogeneous coastal aquifers. Simulations of groundwater flow and salt transport incorporating different geologic structure show highly three-dimensional (3D) preferential flow paths. The along-shore movement of groundwater on average accounts for 40%-50% of the total flowpath length in both conduit-type (e.g., volcanic) heterogeneous aquifers and statistically equivalent (e.g., deltaic) systems generated with sequential indicator simulation (SIS). Our results identify a critical role of three-dimensionality in systems with connected high-permeability geological features. The 3D conduit features connecting land and sea cause terrestrial fresh groundwater to migrate seaward and increases the rate of SGD compared to equivalent homogeneous, SIS and corresponding 2D models. In contrast, in SIS-type systems, less-connected high-permeability features produce mixing zones and SGD nearer to shore, with comparable rates in 3D and 2D models. Onshore, 3D Heterogeneous cases have longer flowpaths and travel times from recharge to discharge compared to 2D cases, but offshore travel times are much lower, particularly for conduit-type models in which flow is highly preferential. Flowpath lengths and travel times are also highly variable in 3D relative to 2D for all heterogeneous simulations. This study highlights the importance of three-dimensionality and the geometry of geologic features in coastal groundwater flow and solute transport processes in highly heterogeneous aquifers. The results have implications for water resources management, biogeochemical reactions within coastal aquifers, and subsequent chemical fluxes to the ocean.

Show More

ABSTRACT:

A density-dependent, variably saturated groundwater flow and solute transport model was used to investigate the influence of swash motions on subsurface flow and moisture dynamics in beach aquifers with heterogeneous distributions of hydraulic conductivity (K) and capillarity. The numerical simulations were performed within a Monte Carlo framework using field measurements conducted in the swash zone of a sandy beach. Our results show that heterogeneous capillarity causes spatially variable capillary rise above the groundwater table. In response to swash motions, heterogeneity creates capillary barriers that result in pockets of elevated moisture content beneath the swash zone. These moisture hotspots persist within the unsaturated zone even at ebb tide when the swash motions recede seaward. Heterogeneous capillarity also results in highly tortuous preferential flow paths and alters the flow rates from the sand surface to the water table. Heterogeneous K greatly enhances the seawater infiltration into the swash zone and modulates its spatial distribution along the beach surface. Due to heterogeneous K and capillarity, complex mixing patterns emerge. Both strain-dominated and vorticity-dominated flow regions develop and dissipate as tides and waves move across the beach surface. Complex mixing patterns of seawater percolating from the swash zone surface to the water table, with localized areas of high and low mixing intensities, are further demonstrated by analysis of dilution index. Our findings reveal the influence of geologic heterogeneity on swash zone moisture and flow dynamics, which may have important implications for sediment transport and chemical processing in beach aquifers.

Show More

ABSTRACT:

A density-dependent, variably saturated groundwater flow and solute transport model was used to investigate the influence of swash motions on subsurface flow and moisture dynamics in beach aquifers with heterogeneous distributions of hydraulic conductivity (K) and capillarity. The numerical simulations were performed within a Monte Carlo framework using field measurements conducted in the swash zone of a sandy beach. Our results show that heterogeneous capillarity causes spatially variable capillary rise above the groundwater table. In response to swash motions, heterogeneity creates capillary barriers that result in pockets of elevated moisture content beneath the swash zone. These moisture hotspots persist within the unsaturated zone even at ebb tide when the swash motions recede seaward. Heterogeneous capillarity also results in highly tortuous preferential flow paths and alters the flow rates from the sand surface to the water table. Heterogeneous K greatly enhances the seawater infiltration into the swash zone and modulates its spatial distribution along the beach surface. Due to heterogeneous K and capillarity, complex mixing patterns emerge. Both strain-dominated and vorticity-dominated flow regions develop and dissipate as tides and waves move across the beach surface. Complex mixing patterns of seawater percolating from the swash zone surface to the water table, with localized areas of high and low mixing intensities, are further demonstrated by analysis of dilution index. Our findings reveal the influence of geologic heterogeneity on swash zone moisture and flow dynamics, which may have important implications for sediment transport and chemical processing in beach aquifers.

Show More

 Contact

Resources
All 0
Collection 0
Resource 0
App Connector 0
Resource Resource
Geng and Michael, 2019
Created: Sept. 24, 2019, 3:31 p.m.
Authors: Geng, Xiaolong

ABSTRACT:

This includes model files processing codes for nearshore pumping simulations in coastal volcanic aquifers.

Show More
Resource Resource
Geng and Michael, 2019
Created: Jan. 13, 2020, 2:59 p.m.
Authors: Geng, Xiaolong

ABSTRACT:

This includes model files processing codes for nearshore pumping simulations in coastal volcanic aquifers.

Show More
Resource Resource
Geng and Michael, 2019
Created: Jan. 13, 2020, 3:02 p.m.
Authors: Geng, Xiaolong

ABSTRACT:

This includes model files processing codes for nearshore pumping simulations in coastal volcanic aquifers.

Show More
Resource Resource

ABSTRACT:

This includes model files processing codes for nearshore pumping simulations in coastal volcanic aquifers.

Show More
Resource Resource

ABSTRACT:

This includes model files processing codes for nearshore pumping simulations in coastal volcanic aquifers.

Show More
Resource Resource

ABSTRACT:

This includes model files processing codes for nearshore pumping simulations in coastal volcanic aquifers.

Show More
Resource Resource

ABSTRACT:

This includes model files processing codes for nearshore pumping simulations in coastal volcanic aquifers.

Show More
Resource Resource

ABSTRACT:

A numerical study, based on a variably-saturated groundwater flow model within a Monto Carlo framework, was conducted to investigate flow and solute transport in a heterogeneous beach aquifer subjected to tides. The numerical simulations were conducted based on our previous tracer experiments performed in a laboratory beach. Heterogeneity is assumed to be multifractal generated using the Universal Multifractal model. Our results show that heterogeneity greatly alters temporal and spatial evolution of the tracer plume migrating in the beach. The spreading coefficient of the plume shows very dynamic response to tides; it increases as the tidally driven recirculation cell overlaps with the plume, and decreases as the recirculation cell moves far from the plume with tides. Descriptive statistics suggests that heterogeneity enhances spreading of the plume in the beach in an ensemble sense along with significant spatial and temporal variation. Due to heterogeneity, high-spots of the pore-water velocity are formed within the recirculation cell, creating transient preferential flow paths in the beach in response to tides. Contours of the Okubo-Weiss parameter show that coupling with tides, heterogeneity creates vorticity-dominated flow regions and also expands strain-dominated flow regions more downward, indicating complex local-scale mixing in the beach, compared to corresponding homogeneous case. Geologic heterogeneity also alters the spatial extent of the recirculating cell and induces highly variable transit time along the recirculating flow paths. The results provide insights into effects of geologic heterogeneity on seawater-groundwater mixing and associated solute transport processes in tidally influenced coastal aquifers.

Show More
Resource Resource
Coastal flow topology
Created: March 30, 2020, 6:17 p.m.
Authors: Geng, Xiaolong

ABSTRACT:

Simulation of density-dependent, variably saturated flow and salt transport incorporating realistic representations of aquifer heterogeneity was conducted within a Monto Carlo framework to investigate intertidal flow topology and salt dynamics. Our results show that heterogeneity coupled with tides creates transient preferential flow paths within the intertidal zone, evolving fingering-type upper saline plumes beneath the beach surface. Compared to homogeneous systems, multiple circulation cells are generated in the intertidal zone with relatively larger spatial extent, creating hotspots of groundwater velocity at depth in the aquifer. Due to the heterogeneity, strain-dominated and vorticity-dominated flow regions coexist at small spatial scales, which alters the flow topology and local-scale mixing. The areal extent of the flow deformation reaches peaks at high tide and low tide, attributed to tidal action for the former and aquifer heterogeneity for the latter. Results suggest aquifer heterogeneity complicates intertidal flow topology, potentially altering pore-scale mixing and nearshore biogeochemical cycles.

Show More
Resource Resource
Coastal flow topology
Created: May 29, 2020, 3:51 p.m.
Authors: Geng, Xiaolong

ABSTRACT:

Simulation of density-dependent, variably saturated flow and salt transport incorporating realistic representations of aquifer heterogeneity was conducted within a Monto Carlo framework to investigate intertidal flow topology and salt dynamics. Our results show that heterogeneity coupled with tides creates transient preferential flow paths within the intertidal zone, evolving fingering-type upper saline plumes beneath the beach surface. Compared to homogeneous systems, multiple circulation cells are generated in the intertidal zone with relatively larger spatial extent, creating hotspots of groundwater velocity at depth in the aquifer. Due to the heterogeneity, strain-dominated and vorticity-dominated flow regions coexist at small spatial scales, which alters the flow topology and local-scale mixing. The areal extent of the flow deformation reaches peaks at high tide and low tide, attributed to tidal action for the former and aquifer heterogeneity for the latter. Results suggest aquifer heterogeneity complicates intertidal flow topology, potentially altering pore-scale mixing and nearshore biogeochemical cycles.

Show More
Resource Resource
Coastal flow topology
Created: May 29, 2020, 4:06 p.m.
Authors: Geng, Xiaolong

ABSTRACT:

Simulation of density-dependent, variably saturated flow and salt transport incorporating realistic representations of aquifer heterogeneity was conducted within a Monto Carlo framework to investigate intertidal flow topology and salt dynamics. Our results show that heterogeneity coupled with tides creates transient preferential flow paths within the intertidal zone, evolving fingering-type upper saline plumes beneath the beach surface. Compared to homogeneous systems, multiple circulation cells are generated in the intertidal zone with relatively larger spatial extent, creating hotspots of groundwater velocity at depth in the aquifer. Due to the heterogeneity, strain-dominated and vorticity-dominated flow regions coexist at small spatial scales, which alters the flow topology and local-scale mixing. The areal extent of the flow deformation reaches peaks at high tide and low tide, attributed to tidal action for the former and aquifer heterogeneity for the latter. Results suggest aquifer heterogeneity complicates intertidal flow topology, potentially altering pore-scale mixing and nearshore biogeochemical cycles.

Show More
Resource Resource

ABSTRACT:

A density-dependent, variably saturated groundwater flow and solute transport model was used to investigate the influence of swash motions on subsurface flow and moisture dynamics in beach aquifers with heterogeneous distributions of hydraulic conductivity (K) and capillarity. The numerical simulations were performed within a Monte Carlo framework using field measurements conducted in the swash zone of a sandy beach. Our results show that heterogeneous capillarity causes spatially variable capillary rise above the groundwater table. In response to swash motions, heterogeneity creates capillary barriers that result in pockets of elevated moisture content beneath the swash zone. These moisture hotspots persist within the unsaturated zone even at ebb tide when the swash motions recede seaward. Heterogeneous capillarity also results in highly tortuous preferential flow paths and alters the flow rates from the sand surface to the water table. Heterogeneous K greatly enhances the seawater infiltration into the swash zone and modulates its spatial distribution along the beach surface. Due to heterogeneous K and capillarity, complex mixing patterns emerge. Both strain-dominated and vorticity-dominated flow regions develop and dissipate as tides and waves move across the beach surface. Complex mixing patterns of seawater percolating from the swash zone surface to the water table, with localized areas of high and low mixing intensities, are further demonstrated by analysis of dilution index. Our findings reveal the influence of geologic heterogeneity on swash zone moisture and flow dynamics, which may have important implications for sediment transport and chemical processing in beach aquifers.

Show More
Resource Resource

ABSTRACT:

A density-dependent, variably saturated groundwater flow and solute transport model was used to investigate the influence of swash motions on subsurface flow and moisture dynamics in beach aquifers with heterogeneous distributions of hydraulic conductivity (K) and capillarity. The numerical simulations were performed within a Monte Carlo framework using field measurements conducted in the swash zone of a sandy beach. Our results show that heterogeneous capillarity causes spatially variable capillary rise above the groundwater table. In response to swash motions, heterogeneity creates capillary barriers that result in pockets of elevated moisture content beneath the swash zone. These moisture hotspots persist within the unsaturated zone even at ebb tide when the swash motions recede seaward. Heterogeneous capillarity also results in highly tortuous preferential flow paths and alters the flow rates from the sand surface to the water table. Heterogeneous K greatly enhances the seawater infiltration into the swash zone and modulates its spatial distribution along the beach surface. Due to heterogeneous K and capillarity, complex mixing patterns emerge. Both strain-dominated and vorticity-dominated flow regions develop and dissipate as tides and waves move across the beach surface. Complex mixing patterns of seawater percolating from the swash zone surface to the water table, with localized areas of high and low mixing intensities, are further demonstrated by analysis of dilution index. Our findings reveal the influence of geologic heterogeneity on swash zone moisture and flow dynamics, which may have important implications for sediment transport and chemical processing in beach aquifers.

Show More
Resource Resource

ABSTRACT:

A density-dependent, variably saturated groundwater flow and solute transport model was used to investigate the influence of swash motions on subsurface flow and moisture dynamics in beach aquifers with heterogeneous distributions of hydraulic conductivity (K) and capillarity. The numerical simulations were performed within a Monte Carlo framework using field measurements conducted in the swash zone of a sandy beach. Our results show that heterogeneous capillarity causes spatially variable capillary rise above the groundwater table. In response to swash motions, heterogeneity creates capillary barriers that result in pockets of elevated moisture content beneath the swash zone. These moisture hotspots persist within the unsaturated zone even at ebb tide when the swash motions recede seaward. Heterogeneous capillarity also results in highly tortuous preferential flow paths and alters the flow rates from the sand surface to the water table. Heterogeneous K greatly enhances the seawater infiltration into the swash zone and modulates its spatial distribution along the beach surface. Due to heterogeneous K and capillarity, complex mixing patterns emerge. Both strain-dominated and vorticity-dominated flow regions develop and dissipate as tides and waves move across the beach surface. Complex mixing patterns of seawater percolating from the swash zone surface to the water table, with localized areas of high and low mixing intensities, are further demonstrated by analysis of dilution index. Our findings reveal the influence of geologic heterogeneity on swash zone moisture and flow dynamics, which may have important implications for sediment transport and chemical processing in beach aquifers.

Show More
Resource Resource

ABSTRACT:

A density-dependent, variably saturated groundwater flow and solute transport model was used to investigate the influence of swash motions on subsurface flow and moisture dynamics in beach aquifers with heterogeneous distributions of hydraulic conductivity (K) and capillarity. The numerical simulations were performed within a Monte Carlo framework using field measurements conducted in the swash zone of a sandy beach. Our results show that heterogeneous capillarity causes spatially variable capillary rise above the groundwater table. In response to swash motions, heterogeneity creates capillary barriers that result in pockets of elevated moisture content beneath the swash zone. These moisture hotspots persist within the unsaturated zone even at ebb tide when the swash motions recede seaward. Heterogeneous capillarity also results in highly tortuous preferential flow paths and alters the flow rates from the sand surface to the water table. Heterogeneous K greatly enhances the seawater infiltration into the swash zone and modulates its spatial distribution along the beach surface. Due to heterogeneous K and capillarity, complex mixing patterns emerge. Both strain-dominated and vorticity-dominated flow regions develop and dissipate as tides and waves move across the beach surface. Complex mixing patterns of seawater percolating from the swash zone surface to the water table, with localized areas of high and low mixing intensities, are further demonstrated by analysis of dilution index. Our findings reveal the influence of geologic heterogeneity on swash zone moisture and flow dynamics, which may have important implications for sediment transport and chemical processing in beach aquifers.

Show More
Resource Resource

ABSTRACT:

A density-dependent, variably saturated groundwater flow and solute transport model was used to investigate the influence of swash motions on subsurface flow and moisture dynamics in beach aquifers with heterogeneous distributions of hydraulic conductivity (K) and capillarity. The numerical simulations were performed within a Monte Carlo framework using field measurements conducted in the swash zone of a sandy beach. Our results show that heterogeneous capillarity causes spatially variable capillary rise above the groundwater table. In response to swash motions, heterogeneity creates capillary barriers that result in pockets of elevated moisture content beneath the swash zone. These moisture hotspots persist within the unsaturated zone even at ebb tide when the swash motions recede seaward. Heterogeneous capillarity also results in highly tortuous preferential flow paths and alters the flow rates from the sand surface to the water table. Heterogeneous K greatly enhances the seawater infiltration into the swash zone and modulates its spatial distribution along the beach surface. Due to heterogeneous K and capillarity, complex mixing patterns emerge. Both strain-dominated and vorticity-dominated flow regions develop and dissipate as tides and waves move across the beach surface. Complex mixing patterns of seawater percolating from the swash zone surface to the water table, with localized areas of high and low mixing intensities, are further demonstrated by analysis of dilution index. Our findings reveal the influence of geologic heterogeneity on swash zone moisture and flow dynamics, which may have important implications for sediment transport and chemical processing in beach aquifers.

Show More
Resource Resource

ABSTRACT:

A density-dependent, variably saturated groundwater flow and solute transport model was used to investigate the influence of swash motions on subsurface flow and moisture dynamics in beach aquifers with heterogeneous distributions of hydraulic conductivity (K) and capillarity. The numerical simulations were performed within a Monte Carlo framework using field measurements conducted in the swash zone of a sandy beach. Our results show that heterogeneous capillarity causes spatially variable capillary rise above the groundwater table. In response to swash motions, heterogeneity creates capillary barriers that result in pockets of elevated moisture content beneath the swash zone. These moisture hotspots persist within the unsaturated zone even at ebb tide when the swash motions recede seaward. Heterogeneous capillarity also results in highly tortuous preferential flow paths and alters the flow rates from the sand surface to the water table. Heterogeneous K greatly enhances the seawater infiltration into the swash zone and modulates its spatial distribution along the beach surface. Due to heterogeneous K and capillarity, complex mixing patterns emerge. Both strain-dominated and vorticity-dominated flow regions develop and dissipate as tides and waves move across the beach surface. Complex mixing patterns of seawater percolating from the swash zone surface to the water table, with localized areas of high and low mixing intensities, are further demonstrated by analysis of dilution index. Our findings reveal the influence of geologic heterogeneity on swash zone moisture and flow dynamics, which may have important implications for sediment transport and chemical processing in beach aquifers.

Show More
Resource Resource

ABSTRACT:

A density-dependent, variably saturated groundwater flow and solute transport model was used to investigate the influence of swash motions on subsurface flow and moisture dynamics in beach aquifers with heterogeneous distributions of hydraulic conductivity (K) and capillarity. The numerical simulations were performed within a Monte Carlo framework using field measurements conducted in the swash zone of a sandy beach. Our results show that heterogeneous capillarity causes spatially variable capillary rise above the groundwater table. In response to swash motions, heterogeneity creates capillary barriers that result in pockets of elevated moisture content beneath the swash zone. These moisture hotspots persist within the unsaturated zone even at ebb tide when the swash motions recede seaward. Heterogeneous capillarity also results in highly tortuous preferential flow paths and alters the flow rates from the sand surface to the water table. Heterogeneous K greatly enhances the seawater infiltration into the swash zone and modulates its spatial distribution along the beach surface. Due to heterogeneous K and capillarity, complex mixing patterns emerge. Both strain-dominated and vorticity-dominated flow regions develop and dissipate as tides and waves move across the beach surface. Complex mixing patterns of seawater percolating from the swash zone surface to the water table, with localized areas of high and low mixing intensities, are further demonstrated by analysis of dilution index. Our findings reveal the influence of geologic heterogeneity on swash zone moisture and flow dynamics, which may have important implications for sediment transport and chemical processing in beach aquifers.

Show More
Resource Resource

ABSTRACT:

A density-dependent, variably saturated groundwater flow and solute transport model was used to investigate the influence of swash motions on subsurface flow and moisture dynamics in beach aquifers with heterogeneous distributions of hydraulic conductivity (K) and capillarity. The numerical simulations were performed within a Monte Carlo framework using field measurements conducted in the swash zone of a sandy beach. Our results show that heterogeneous capillarity causes spatially variable capillary rise above the groundwater table. In response to swash motions, heterogeneity creates capillary barriers that result in pockets of elevated moisture content beneath the swash zone. These moisture hotspots persist within the unsaturated zone even at ebb tide when the swash motions recede seaward. Heterogeneous capillarity also results in highly tortuous preferential flow paths and alters the flow rates from the sand surface to the water table. Heterogeneous K greatly enhances the seawater infiltration into the swash zone and modulates its spatial distribution along the beach surface. Due to heterogeneous K and capillarity, complex mixing patterns emerge. Both strain-dominated and vorticity-dominated flow regions develop and dissipate as tides and waves move across the beach surface. Complex mixing patterns of seawater percolating from the swash zone surface to the water table, with localized areas of high and low mixing intensities, are further demonstrated by analysis of dilution index. Our findings reveal the influence of geologic heterogeneity on swash zone moisture and flow dynamics, which may have important implications for sediment transport and chemical processing in beach aquifers.

Show More
Resource Resource

ABSTRACT:

Studies of coastal groundwater dynamics often assume two-dimensional (2D) flow and transport along a shore-perpendicular cross-section. We show that along-shore movement of groundwater may also be significant in heterogeneous coastal aquifers. Simulations of groundwater flow and salt transport incorporating different geologic structure show highly three-dimensional (3D) preferential flow paths. The along-shore movement of groundwater on average accounts for 40%-50% of the total flowpath length in both conduit-type (e.g., volcanic) heterogeneous aquifers and statistically equivalent (e.g., deltaic) systems generated with sequential indicator simulation (SIS). Our results identify a critical role of three-dimensionality in systems with connected high-permeability geological features. The 3D conduit features connecting land and sea cause terrestrial fresh groundwater to migrate seaward and increases the rate of SGD compared to equivalent homogeneous, SIS and corresponding 2D models. In contrast, in SIS-type systems, less-connected high-permeability features produce mixing zones and SGD nearer to shore, with comparable rates in 3D and 2D models. Onshore, 3D Heterogeneous cases have longer flowpaths and travel times from recharge to discharge compared to 2D cases, but offshore travel times are much lower, particularly for conduit-type models in which flow is highly preferential. Flowpath lengths and travel times are also highly variable in 3D relative to 2D for all heterogeneous simulations. This study highlights the importance of three-dimensionality and the geometry of geologic features in coastal groundwater flow and solute transport processes in highly heterogeneous aquifers. The results have implications for water resources management, biogeochemical reactions within coastal aquifers, and subsequent chemical fluxes to the ocean.

Show More
Resource Resource
Impacts of evaporation-induced groundwater upwelling on mixing dynamics in shallow wetlands
Created: May 22, 2023, 6:59 p.m.
Authors: Geng, Xiaolong · Michel C. Boufadel · Hailong Li

ABSTRACT:

Groundwater mixing dynamics play a crucial role in the biogeochemical cycling of shallow wetlands. In this paper, we conducted groundwater simulations to investigate the combined effects of evaporation and local heterogeneity on mixing dynamics in shallow wetland sediments. The results show that evaporation causes groundwater and solutes to upwell from deep sediments to the surface. As the solute reaches the surface, evaporation enhances the accumulation of the solute near the surface, resulting in a higher solute concentration than in deep sediments. Mapping of flow topology reveals that local heterogeneity generates spatially varied mixing patterns mainly along preferential flow pathways. The upwelling of groundwater induced by surface evaporation through heterogeneous sediments is likely to create distinct mixing hotspots that differ spatially from those generated by lateral preferential flows driven by large-scale hydraulic gradients, which enhances the overall mixing in the subsurface. These findings have strong implications for biogeochemical processing in wetlands.

Show More
Resource Resource

ABSTRACT:

The interactions between the atmosphere, ocean, and beach in the swash zone are dynamic, influencing water flux and solute exchange across the land-sea interface. However, the integrated role of these interactions in governing transport processes within the swash zone remains unexplored. This study employs groundwater simulations to examine the combined effects of waves and evaporation on subsurface flow and salinity dynamics in a shallow beach environment. Our simulations reveal that wave motion generates a saline plume beneath the swash zone, where evaporation induces hypersalinity near the sand surface. This leads to the formation of a hypersaline plume beneath the swash zone during periods of wave recession, which extends vertically downward, driven by the resulting vertical density gradients. This hypersaline plume moves landward and down the beachface due to wave-induced seawater infiltration and is subsequently diluted by the surrounding saline groundwater. Furthermore, swash motion increases near-surface moisture, leading to an elevated evaporation rate, with dynamic fluctuations in both moisture and evaporation rate due to high-frequency surface inundation caused by individual waves. Notably, the highest evaporation rates on the swash zone surface do not always correspond to the greatest elevations of salt concentration within the swash zone. This is because optimal moisture is also required – neither too low to impede evaporation nor too high to dilute accumulated salt near the surface. These insights are crucial for enhancing our understanding of coastal groundwater flow, biogeochemical conditions, and the subsequent nutrient cycling and contaminant transport in coastal zones.

Show More